Spaces:
Runtime error
Runtime error
File size: 12,392 Bytes
acc65ac b85ff42 577a1e1 7dbcbdd 74ca3a6 acc65ac 577a1e1 a1323b0 577a1e1 363bf89 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 2c7be5c 577a1e1 b85ff42 acc65ac 577a1e1 acc65ac 2c7be5c e30aa81 acc65ac b85ff42 577a1e1 acc65ac 03e04be 78b7958 7dbcbdd 74ca3a6 03e04be 74ca3a6 2c7be5c 7dbcbdd 47dc851 7dbcbdd e30aa81 7dbcbdd b85ff42 577a1e1 4806da3 577a1e1 cf1c576 577a1e1 b85ff42 577a1e1 363bf89 b85ff42 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 b85ff42 577a1e1 acc65ac b85ff42 acc65ac b85ff42 acc65ac c2eef62 577a1e1 acc65ac 577a1e1 acc65ac 577a1e1 c2eef62 acc65ac c2eef62 acc65ac c2eef62 acc65ac c2eef62 acc65ac c2eef62 acc65ac c2eef62 acc65ac c2eef62 acc65ac c2eef62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
from url import md_files_url
from get_data import extract_repo_details, fetch_md_file_via_api, data_loader, chunk_text, download_hugging_face_embeddings
from langchain_community.llms import Ollama
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever
from langchain.memory import ChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_pinecone import PineconeVectorStore
from pinecone.grpc import PineconeGRPC as Pinecone
from pinecone import ServerlessSpec
from langchain.schema import Document
from dotenv import load_dotenv
from prompt import system_prompt, retriever_prompt
import os
import logging
import gradio as gr
import sqlite3
import bcrypt
import uuid
from datetime import datetime
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
DB_PATH = "chatbot.db"
base = {}
last_messages = 10
documents = []
load_dotenv()
AUTH_TOKEN_KEY = os.environ.get('AUTH_TOKEN_KEY')
os.environ['AUTH_TOKEN_KEY'] = AUTH_TOKEN_KEY
PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
os.environ['PINECONE_API_KEY'] = PINECONE_API_KEY
# ---- Database part ----- #
# Database Connection
def connect_db():
try:
return sqlite3.connect(DB_PATH)
except sqlite3.Error as e:
logger.error(f"Database connection failed: {e}")
return None # Or raise a custom exception
def create_tables():
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT NOT NULL
)''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS chat_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER NOT NULL,
message TEXT NOT NULL,
response TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY(user_id) REFERENCES users(id) ON DELETE CASCADE
)''')
conn.commit()
create_tables()
logger.info("Database tables created successfully!")
# Secure Password Hashing
def hash_password(password):
return bcrypt.hashpw(password.encode(), bcrypt.gensalt()).decode()
def check_password(password, hashed):
return bcrypt.checkpw(password.encode(), hashed.encode())
# Authenticate User
def authenticate(username, password):
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("SELECT id, password_hash FROM users WHERE username = ?", (username,))
user = cursor.fetchone()
if user and check_password(password, user[1]):
session_id = uuid.uuid4().hex # Unique session ID
return session_id, f"Welcome {username}!", user[0] # user_id
return None, "Invalid username or password.", None
# Signup Function
def signup(username, password):
try:
hashed_pw = hash_password(password)
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO users (username, password_hash) VALUES (?, ?)", (username, hashed_pw))
conn.commit()
return f"User {username} registered successfully! You can now log in."
except sqlite3.IntegrityError:
return "Username already exists. Try another one."
# Store Chat in Database
def save_chat(user_id, message, response):
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("INSERT INTO chat_history (user_id, message, response, created_at) VALUES (?, ?, ?, ?)",
(user_id, message, response, datetime.now()))
conn.commit()
# Retrieve Chat History (User-specific)
def get_chat_history(user_id):
with connect_db() as conn:
cursor = conn.cursor()
cursor.execute("SELECT message, response FROM chat_history WHERE user_id = ? ORDER BY created_at", (user_id,))
chat_history = cursor.fetchall()
return [(msg, resp) for msg, resp in chat_history]
# --------------------------------- #
#Option 2-load directly from urls
for url in md_files_url:
try:
repo_owner, repo_name, file_path = extract_repo_details(url)
content = fetch_md_file_via_api(repo_owner, repo_name, file_path, AUTH_TOKEN_KEY)
if content:
document = Document(page_content=content, metadata={"source": file_path})
documents.append(document)
except ValueError as ve:
logging.error(f"Error processing URL {url}: {ve}")
print(f"Fetched {len(documents)} documents.")
text_chunk = chunk_text(documents)
index_name = 'humblebeeai'
pc = Pinecone(api_key=PINECONE_API_KEY)
existing_indexes = [index['name'] for index in pc.list_indexes()]
if index_name in existing_indexes:
print(f"๐ข Index '{index_name}' already exists. Skipping creation.")
else:
print(f"๐ด Index '{index_name}' not found. Creating it now...")
pc.create_index(
name=index_name,
dimension=384, # Adjust the dimension based on your embeddings
metric="cosine",
spec=ServerlessSpec(
cloud="aws",
region="us-east-1"
)
)
print(f"โ
Index '{index_name}' created successfully.")
docsearch = PineconeVectorStore.from_documents(
documents=text_chunk,
index_name=index_name,
embedding=download_hugging_face_embeddings()
)
docsearch = PineconeVectorStore.from_existing_index(
index_name=index_name,
embedding=download_hugging_face_embeddings()
)
retriever = docsearch.as_retriever(search_type='mmr', search_kwargs={'k': 10, 'lambda_mult': 0.5})
prompt = ChatPromptTemplate.from_messages(
[
('system', system_prompt),
('human', '{input}'),
]
)
llm =Ollama(model='llama3.2', base_url='https://ollama-gcs-633059950484.us-central1.run.app')
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
context_prompt = ChatPromptTemplate.from_messages(
[
('system', retriever_prompt),
MessagesPlaceholder(variable_name='chat_history'),
('human', '{input}'),
]
)
history_aware_retriever = create_history_aware_retriever(llm, retriever, context_prompt)
qa_prompt = ChatPromptTemplate.from_messages(
[
('system', system_prompt),
MessagesPlaceholder(variable_name='chat_history'),
('human', '{input}'),
]
)
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
def get_session_history(session_id):
if session_id not in base:
base[session_id] = ChatMessageHistory()
stored_msg = base[session_id].messages
if len(stored_msg) >= last_messages:
base[session_id].clear()
for msg in stored_msg[-last_messages:]:
base[session_id].add_message(msg)
return base[session_id]
chat_with_msg_history = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key='input',
history_messages_key='chat_history'
)
from langchain.schema import AIMessage, HumanMessage
def get_combined_history(session_id, user_id):
persistent_history = get_chat_history(user_id) # Retrieve long-term memory
# Convert stored chat history into messages
long_term_messages = [
HumanMessage(content=msg) if i % 2 == 0 else AIMessage(content=resp)
for i, (msg, resp) in enumerate(persistent_history)
]
# Collect session-based recent messages
recent_messages = base[session_id].messages if session_id in base else []
# Merge and return the combined context
combined_history = long_term_messages + recent_messages
print("Combined History for Debugging:", combined_history) # ๐น Debugging step
return combined_history[-last_messages:] # Optionally limit
def get_response(message, chat_history, session_id, user_id):
if not session_id or not user_id:
return "Session expired. Please log in again.", []
combined_history = get_combined_history(session_id, user_id)
response = chat_with_msg_history.invoke(
{
'input': message,
'chat_history': combined_history # This should be a list of LangChain message objects
},
{'configurable': {'session_id': session_id}},
)
# ๐น Log the response for debugging
print("LangChain Response:", response)
# ๐น Ensure response contains 'answer' (adjust this if needed)
if isinstance(response, dict) and 'answer' in response:
chatbot_reply = response['answer']
else:
chatbot_reply = "I'm sorry, I couldn't process that request."
save_chat(user_id, message, chatbot_reply)
chat_history.append((message, chatbot_reply)) # Append instead of overwriting
return "", chat_history
# Logout Function
def logout(session_id):
if session_id in base:
del base[session_id] # Clear session history
return None, "Logged out successfully.", None
import gradio as gr
def enable_buttons(username, password):
is_valid = bool(username.strip()) and bool(password.strip())
return gr.update(interactive=is_valid), gr.update(interactive=is_valid)
def login_user(username, password):
session_id, message, user_id = authenticate(username, password)
if session_id:
# Hide login, signup, and status, and show the chat interface and logout button
return session_id, user_id, message, "", "", get_chat_history(user_id), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
return None, None, message, username, password, [], gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def signup_user(username, password):
message = signup(username, password)
return message, "", ""
def logout_user():
return None, "", "", "", [], gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown("## HumblebeeAI Customer Support Chatbot")
with gr.Row():
username = gr.Textbox(label="Username", interactive=True)
password = gr.Textbox(label="Password", type="password", interactive=True)
login_button = gr.Button("Login", interactive=False) # Initially disabled
signup_button = gr.Button("Signup", interactive=False) # Initially disabled
login_status = gr.Textbox(label="Status", interactive=False)
session_state = gr.State(None)
user_id_state = gr.State(None)
with gr.Column(visible=False) as chat_interface:
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Message", placeholder="Ask me anything...")
send_button = gr.Button("Send")
logout_button = gr.Button("Logout")
# Enable buttons only when both username & password are filled
username.change(enable_buttons, [username, password], [login_button, signup_button])
password.change(enable_buttons, [username, password], [login_button, signup_button])
# Login Logic (Clears Username & Password)
login_button.click(
login_user,
[username, password],
[session_state, user_id_state, login_status, username, password, chatbot, chat_interface, username, password, send_button, logout_button]
)
# Signup Logic (Clears Username & Password)
signup_button.click(
signup_user,
[username, password],
[login_status, username, password]
)
# Sending Messages
send_button.click(
get_response,
[msg, chatbot, session_state, user_id_state],
[msg, chatbot]
)
msg.submit(
get_response,
[msg, chatbot, session_state, user_id_state],
[msg, chatbot]
)
# Logout Logic (Clears Chat and Resets UI)
logout_button.click(
logout_user,
None,
[session_state, username, password, login_status, chatbot, chat_interface, username, password, send_button, logout_button]
)
demo.launch(share=True)
|