joe4ai commited on
Commit
74ca3a6
·
verified ·
1 Parent(s): 5a2cbe8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -0
app.py CHANGED
@@ -9,6 +9,8 @@ from langchain.chains import create_history_aware_retriever
9
  from langchain.memory import ChatMessageHistory
10
  from langchain_core.runnables.history import RunnableWithMessageHistory
11
  from langchain_pinecone import PineconeVectorStore
 
 
12
  from langchain.schema import Document
13
  from dotenv import load_dotenv
14
  from prompt import system_prompt, retriever_prompt
@@ -199,7 +201,25 @@ PINECONE_API_KEY = os.environ.get('PINECONE_API_KEY')
199
  os.environ['PINECONE_API_KEY'] = PINECONE_API_KEY
200
 
201
  index_name = 'humblebeeai'
 
202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  docsearch = PineconeVectorStore.from_documents(
204
  documents=text_chunks,
205
  index_name=index_name,
 
9
  from langchain.memory import ChatMessageHistory
10
  from langchain_core.runnables.history import RunnableWithMessageHistory
11
  from langchain_pinecone import PineconeVectorStore
12
+ from pinecone.grpc import PineconeGRPC as Pinecone
13
+ from pinecone import ServerlessSpec
14
  from langchain.schema import Document
15
  from dotenv import load_dotenv
16
  from prompt import system_prompt, retriever_prompt
 
201
  os.environ['PINECONE_API_KEY'] = PINECONE_API_KEY
202
 
203
  index_name = 'humblebeeai'
204
+ pc = Pinecone(api_key=PINECONE_API_KEY)
205
 
206
+ existing_indexes = [index['name'] for index in pc.list_indexes()]
207
+ if index_name in existing_indexes:
208
+ print(f"🟢 Index '{index_name}' already exists. Skipping creation.")
209
+ else:
210
+ print(f"🔴 Index '{index_name}' not found. Creating it now...")
211
+
212
+ pc.create_index(
213
+ name=index_name,
214
+ dimension=384, # Adjust the dimension based on your embeddings
215
+ metric="cosine",
216
+ spec=ServerlessSpec(
217
+ cloud="aws",
218
+ region="us-east-1"
219
+ )
220
+ )
221
+
222
+ print(f"✅ Index '{index_name}' created successfully.")
223
  docsearch = PineconeVectorStore.from_documents(
224
  documents=text_chunks,
225
  index_name=index_name,