File size: 8,662 Bytes
9724529
 
 
 
 
34ba0e8
 
03b2430
ce94033
9724529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34ba0e8
9724529
 
 
 
 
4ad4d21
6a520e3
34ba0e8
 
5d54a1e
 
 
34ba0e8
 
 
 
 
 
 
9724529
9e0d0d0
9724529
b990d66
9724529
34ba0e8
ba1d1a3
4d89f7d
 
263fba5
b74b522
ce94033
03b2430
ec6e908
 
ce94033
 
03b2430
de35b39
4d89f7d
7b33151
9e0d0d0
 
 
0666c9c
b8f6ff6
0666c9c
6a520e3
 
4d89f7d
6a520e3
7b33151
4d89f7d
03b2430
a6b6056
c77117a
ce94033
 
 
36ad0cb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import yt_dlp
import numpy as np
import librosa
import soundfile as sf
import os
import zipfile
from argparse import ArgumentParser


# Function to download audio from YouTube and save it as a WAV file
def download_youtube_audio(url, audio_name):
    ydl_opts = {
        'format': 'bestaudio/best',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'wav',
        }],
        "outtmpl": f'youtubeaudio/{audio_name}',  # Output template
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        ydl.download([url])
    return f'youtubeaudio/{audio_name}.wav'

# Function to calculate RMS
def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"):
    padding = (int(frame_length // 2), int(frame_length // 2))
    y = np.pad(y, padding, mode=pad_mode)

    axis = -1
    out_strides = y.strides + tuple([y.strides[axis]])
    x_shape_trimmed = list(y.shape)
    x_shape_trimmed[axis] -= frame_length - 1
    out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
    xw = np.lib.stride_tricks.as_strided(
        y, shape=out_shape, strides=out_strides
    )
    if axis < 0:
        target_axis = axis - 1
    else:
        target_axis = axis + 1
    xw = np.moveaxis(xw, -1, target_axis)
    slices = [slice(None)] * xw.ndim
    slices[axis] = slice(0, None, hop_length)
    x = xw[tuple(slices)]

    power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
    return np.sqrt(power)

# Slicer class
class Slicer:
    def __init__(self, sr, threshold=-40., min_length=5000, min_interval=300, hop_size=20, max_sil_kept=5000):
        if not min_length >= min_interval >= hop_size:
            raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
        if not max_sil_kept >= hop_size:
            raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
        min_interval = sr * min_interval / 1000
        self.threshold = 10 ** (threshold / 20.)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)

    def _apply_slice(self, waveform, begin, end):
        if len(waveform.shape) > 1:
            return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
        else:
            return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]

    def slice(self, waveform):
        if len(waveform.shape) > 1:
            samples = waveform.mean(axis=0)
        else:
            samples = waveform
        if samples.shape[0] <= self.min_length:
            return [waveform]
        rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
        sil_tags = []
        silence_start = None
        clip_start = 0
        for i, rms in enumerate(rms_list):
            if rms < self.threshold:
                if silence_start is None:
                    silence_start = i
                continue
            if silence_start is None:
                continue
            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue
            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start: i + 1].argmin() + silence_start
                if silence_start == 0:
                    sil_tags.append((0, pos))
                else:
                    sil_tags.append((pos, pos))
                clip_start = pos
            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
                pos += i - self.max_sil_kept
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                else:
                    sil_tags.append((pos_l, pos_r))
                clip_start = pos_r
            silence_start = None
        total_frames = rms_list.shape[0]
        if silence_start is not None and total_frames - silence_start >= self.min_interval:
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))
        if len(sil_tags) == 0:
            return [waveform]
        else:
            chunks = []
            if sil_tags[0][0] > 0:
                chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
            for i in range(len(sil_tags) - 1):
                chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
            if sil_tags[-1][1] < total_frames:
                chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
            return chunks

# Function to slice and save audio chunks
def slice_audio(file_path, audio_name):
    audio, sr = librosa.load(file_path, sr=None, mono=False)
    os.makedirs(f'dataset/{audio_name}', exist_ok=True)
    slicer = Slicer(sr=sr, threshold=-40, min_length=5000, min_interval=500, hop_size=10, max_sil_kept=500)
    chunks = slicer.slice(audio)
    for i, chunk in enumerate(chunks):
        if len(chunk.shape) > 1:
            chunk = chunk.T
        sf.write(f'dataset/{audio_name}/split_{i}.wav', chunk, sr)
    return f"dataset/{audio_name}"

# Function to zip the dataset directory
def zip_directory(directory_path, audio_name):
    zip_file = f"dataset/{audio_name}.zip"
    os.makedirs(os.path.dirname(zip_file), exist_ok=True)  # Ensure the directory exists
    with zipfile.ZipFile(zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, dirs, files in os.walk(directory_path):
            for file in files:
                file_path = os.path.join(root, file)
                arcname = os.path.relpath(file_path, start=directory_path)
                zipf.write(file_path, arcname)
    return zip_file


# Gradio interface
def process_audio(url, audio_name):
    file_path = download_youtube_audio(url, audio_name)
    dataset_path = slice_audio(file_path, audio_name)
    zip_file = zip_directory(dataset_path, audio_name)
    return zip_file, print(f"{zip_file} successfully processed")




thme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="blue")


with gr.Blocks(theme=thme) as demo:
    gr.Markdown("# <div style='text-align: center;'> RVC DATASET MAKER</div>")
    gr.Markdown(" <div style='text-align: center;'> only work for vocal only audio!</div>")
    gr.Markdown("<div style='text-align: center;'> please `❤` this spaces 🤗 if helpfull</dif>")
    with gr.Tabs():
        with gr.TabItem("make dataset"):
            with gr.Row():
                url_input = gr.Textbox(label="YouTube URL", placeholder="https://youtu.be/ZdoiTX1f1tU?si=hZ96tryqaPIYfwg1")
            with gr.Row():
                audio_name_input = gr.Textbox(label="Audio Name", placeholder="Amy")
            with gr.Row():
                result_output = gr.File(label="Download Sliced Audio Zip")
                result_process = gr.Textbox(label="Sliced Audio output")
            with gr.Row():
                run_button = gr.Button("Process")
                run_button.click(fn=process_audio, inputs=[url_input, audio_name_input], outputs=[result_output, result_process])
        
    with gr.Tabs():
        gr.Markdown(f"### <div style='text-align: center;'>made with ❤ by <a href='https://huggingface.co/Hev832'>Hev832</a></div>")



demo.launch(
    debug=True,
    share=True,
)