Hev832 commited on
Commit
9724529
·
verified ·
1 Parent(s): cec6953

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +161 -0
app.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import yt_dlp
3
+ import numpy as np
4
+ import librosa
5
+ import soundfile as sf
6
+
7
+ # Function to download audio from YouTube and save it as a WAV file
8
+ def download_youtube_audio(url, audio_name):
9
+ ydl_opts = {
10
+ 'format': 'bestaudio/best',
11
+ 'postprocessors': [{
12
+ 'key': 'FFmpegExtractAudio',
13
+ 'preferredcodec': 'wav',
14
+ }],
15
+ "outtmpl": f'youtubeaudio/{audio_name}', # Output template
16
+ }
17
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
18
+ ydl.download([url])
19
+ return f'youtubeaudio/{audio_name}.wav'
20
+
21
+ # Function to calculate RMS
22
+ def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"):
23
+ padding = (int(frame_length // 2), int(frame_length // 2))
24
+ y = np.pad(y, padding, mode=pad_mode)
25
+
26
+ axis = -1
27
+ out_strides = y.strides + tuple([y.strides[axis]])
28
+ x_shape_trimmed = list(y.shape)
29
+ x_shape_trimmed[axis] -= frame_length - 1
30
+ out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
31
+ xw = np.lib.stride_tricks.as_strided(
32
+ y, shape=out_shape, strides=out_strides
33
+ )
34
+ if axis < 0:
35
+ target_axis = axis - 1
36
+ else:
37
+ target_axis = axis + 1
38
+ xw = np.moveaxis(xw, -1, target_axis)
39
+ slices = [slice(None)] * xw.ndim
40
+ slices[axis] = slice(0, None, hop_length)
41
+ x = xw[tuple(slices)]
42
+
43
+ power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
44
+ return np.sqrt(power)
45
+
46
+ # Slicer class
47
+ class Slicer:
48
+ def __init__(self, sr, threshold=-40., min_length=5000, min_interval=300, hop_size=20, max_sil_kept=5000):
49
+ if not min_length >= min_interval >= hop_size:
50
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
51
+ if not max_sil_kept >= hop_size:
52
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
53
+ min_interval = sr * min_interval / 1000
54
+ self.threshold = 10 ** (threshold / 20.)
55
+ self.hop_size = round(sr * hop_size / 1000)
56
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
57
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
58
+ self.min_interval = round(min_interval / self.hop_size)
59
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
60
+
61
+ def _apply_slice(self, waveform, begin, end):
62
+ if len(waveform.shape) > 1:
63
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
64
+ else:
65
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
66
+
67
+ def slice(self, waveform):
68
+ if len(waveform.shape) > 1:
69
+ samples = waveform.mean(axis=0)
70
+ else:
71
+ samples = waveform
72
+ if samples.shape[0] <= self.min_length:
73
+ return [waveform]
74
+ rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
75
+ sil_tags = []
76
+ silence_start = None
77
+ clip_start = 0
78
+ for i, rms in enumerate(rms_list):
79
+ if rms < self.threshold:
80
+ if silence_start is None:
81
+ silence_start = i
82
+ continue
83
+ if silence_start is None:
84
+ continue
85
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
86
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
87
+ if not is_leading_silence and not need_slice_middle:
88
+ silence_start = None
89
+ continue
90
+ if i - silence_start <= self.max_sil_kept:
91
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
92
+ if silence_start == 0:
93
+ sil_tags.append((0, pos))
94
+ else:
95
+ sil_tags.append((pos, pos))
96
+ clip_start = pos
97
+ elif i - silence_start <= self.max_sil_kept * 2:
98
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
99
+ pos += i - self.max_sil_kept
100
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
101
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
102
+ if silence_start == 0:
103
+ sil_tags.append((0, pos_r))
104
+ clip_start = pos_r
105
+ else:
106
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
107
+ clip_start = max(pos_r, pos)
108
+ else:
109
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
110
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
111
+ if silence_start == 0:
112
+ sil_tags.append((0, pos_r))
113
+ else:
114
+ sil_tags.append((pos_l, pos_r))
115
+ clip_start = pos_r
116
+ silence_start = None
117
+ total_frames = rms_list.shape[0]
118
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
119
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
120
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
121
+ sil_tags.append((pos, total_frames + 1))
122
+ if len(sil_tags) == 0:
123
+ return [waveform]
124
+ else:
125
+ chunks = []
126
+ if sil_tags[0][0] > 0:
127
+ chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
128
+ for i in range(len(sil_tags) - 1):
129
+ chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
130
+ if sil_tags[-1][1] < total_frames:
131
+ chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
132
+ return chunks
133
+
134
+ # Function to slice and save audio chunks
135
+ def slice_audio(file_path, audio_name):
136
+ audio, sr = librosa.load(file_path, sr=None, mono=False)
137
+ slicer = Slicer(sr=sr, threshold=-40, min_length=5000, min_interval=500, hop_size=10, max_sil_kept=500)
138
+ chunks = slicer.slice(audio)
139
+ for i, chunk in enumerate(chunks):
140
+ if len(chunk.shape) > 1:
141
+ chunk = chunk.T
142
+ sf.write(f'dataset/{audio_name}/split_{i}.wav', chunk, sr)
143
+ return f"Audio sliced and saved in dataset/{audio_name}/"
144
+
145
+ # Gradio interface
146
+ def process_audio(url, audio_name):
147
+ file_path = download_youtube_audio(url, audio_name)
148
+ result = slice_audio(file_path, audio_name)
149
+ return result
150
+
151
+ with gr.Blocks() as demo:
152
+ gr.Markdown("RVC DATASET MAKER 2.0")
153
+ with gr.Tabs():
154
+ with gr.Row():
155
+ url_input = gr.Textbox(label="YouTube URL")
156
+ audio_name_input = gr.Textbox(label="Audio Name")
157
+ result_output = gr.Textbox(label="Output Directory")
158
+ run_button = gr.Button("Download and Slice Audio")
159
+ run_button.click(fn=process_audio, inputs=[url_input, audio_name_input], outputs=result_output)
160
+
161
+ demo.launch()