Spaces:
Running
Running
File size: 9,896 Bytes
9724529 34ba0e8 b74b522 9724529 34ba0e8 9724529 4ad4d21 6a520e3 34ba0e8 5d54a1e 34ba0e8 9724529 9e0d0d0 9724529 b990d66 9724529 34ba0e8 ba1d1a3 04e3761 b74b522 04e3761 b74b522 90818a2 b74b522 9724529 34cca20 9e0d0d0 6a520e3 2a2b216 6a520e3 4ad4d21 6a520e3 b990d66 6a520e3 96a6119 04e3761 8f4a812 6343dce 8f4a812 34cca20 a6b6056 c77117a 6a520e3 9724529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import yt_dlp
import numpy as np
import librosa
import soundfile as sf
import os
import zipfile
from huggingface_hub import HfApi, HfFolder, Repository, create_repo
# Function to download audio from YouTube and save it as a WAV file
def download_youtube_audio(url, audio_name):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
"outtmpl": f'youtubeaudio/{audio_name}', # Output template
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
return f'youtubeaudio/{audio_name}.wav'
# Function to calculate RMS
def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"):
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
out_strides = y.strides + tuple([y.strides[axis]])
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(
y, shape=out_shape, strides=out_strides
)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
# Slicer class
class Slicer:
def __init__(self, sr, threshold=-40., min_length=5000, min_interval=300, hop_size=20, max_sil_kept=5000):
if not min_length >= min_interval >= hop_size:
raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
if not max_sil_kept >= hop_size:
raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
else:
return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
if rms < self.threshold:
if silence_start is None:
silence_start = i
continue
if silence_start is None:
continue
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start: i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
total_frames = rms_list.shape[0]
if silence_start is not None and total_frames - silence_start >= self.min_interval:
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
if len(sil_tags) == 0:
return [waveform]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
for i in range(len(sil_tags) - 1):
chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
if sil_tags[-1][1] < total_frames:
chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
return chunks
# Function to slice and save audio chunks
def slice_audio(file_path, audio_name):
audio, sr = librosa.load(file_path, sr=None, mono=False)
os.makedirs(f'dataset/{audio_name}', exist_ok=True)
slicer = Slicer(sr=sr, threshold=-40, min_length=5000, min_interval=500, hop_size=10, max_sil_kept=500)
chunks = slicer.slice(audio)
for i, chunk in enumerate(chunks):
if len(chunk.shape) > 1:
chunk = chunk.T
sf.write(f'dataset/{audio_name}/split_{i}.wav', chunk, sr)
return f"dataset/{audio_name}"
# Function to zip the dataset directory
def zip_directory(directory_path, audio_name):
zip_file = f"dataset/{audio_name}.zip"
os.makedirs(os.path.dirname(zip_file), exist_ok=True) # Ensure the directory exists
with zipfile.ZipFile(zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, start=directory_path)
zipf.write(file_path, arcname)
return zip_file
# Function to upload zip file to Hugging Face Hub
def upload_to_huggingface(zip_file, repo_id, hf_token):
api = HfApi()
api.upload_file(
path_or_fileobj=zip_file,
path_in_repo=os.path.basename(zip_file),
repo_id=repo_id,
token=hf_token
)
return f"File uploaded to {repo_id}/{os.path.basename(zip_file)}"
# Gradio interface
def process_audio(url, audio_name):
file_path = download_youtube_audio(url, audio_name)
dataset_path = slice_audio(file_path, audio_name)
zip_file = zip_directory(dataset_path, audio_name)
return zip_file
# upload to hf
def push_to_hub(hf_token, repo_id):
zip_file = zip_directory(dataset_path, audio_name)
upload_message = upload_to_huggingface(zip_file, repo_id, hf_token)
return upload_message
# create new repository (optional)
def create_new_repo(repoid):
try:
create_repo(repoid)
return f"Repo '{repoid}' created successfully!"
except Exception as e:
return str(e)
with gr.Blocks() as demo:
gr.Markdown(" # RVC Dataset Maker")
with gr.Tabs():
with gr.TabItem("make dataset"):
with gr.Row():
url_input = gr.Textbox(label="YouTube URL")
audio_name_input = gr.Textbox(label="Audio Name")
with gr.Row():
with gr.Accordion("Export dataset to huggingface (optional)", open=False):
with gr.Row():
hf_token_input = gr.Textbox(label="Hugging Face Token")
repo_id_input = gr.Textbox(label="Repository ID")
with gr.Row():
push_hub = gr.Button("Hugging Face Upload")
upload_output = gr.Textbox(label="Hugging Face Upload Status")
with gr.Row():
result_output = gr.File(label="Download Sliced Audio Zip")
with gr.Row():
run_button = gr.Button("Download and Slice Audio")
run_button.click(fn=process_audio, inputs=[url_input, audio_name_input], outputs=[result_output])
push_hub.click(fn=push_to_hub, inputs=[result_output, hf_token_input, repo_id_input], outputs=[upload_output])
with gr.TabItem("note"):
with gr.Row():
gr.Markdown(
"""
# Note:
If you use google colab make sure you follow this step
`example:`
!unzip content/{audio_name}.zip content/{audio_name}/{audio_name}
"""
)
with gr.Tabs():
gr.Markdown(f"### <div style='text-align: center;'>made with ❤ by <a href='https://huggingface.co/Hev832'>Hev832</a></div>")
demo.launch()
|