|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
""" |
|
Copied from inference in colab notebook |
|
""" |
|
|
|
from transformers import AutoTokenizer , AutoModelForCausalLM , TextIteratorStreamer |
|
import torch |
|
from threading import Thread |
|
|
|
|
|
base_model = "Helsinki-NLP/europarl" |
|
model_path = "Mat17892/t5small_enfr_opus" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained(base_model) |
|
|
|
|
|
from peft import PeftModel |
|
model = PeftModel.from_pretrained(base_model, model_path) |
|
|
|
def respond( |
|
message: str, |
|
history: list[tuple[str, str]], |
|
system_message: str, |
|
max_tokens: int, |
|
temperature: float, |
|
top_p: float, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize = True, |
|
add_generation_prompt = True, |
|
return_tensors = "pt", |
|
) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
generation_kwargs = { |
|
"input_ids": inputs, |
|
"max_new_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"do_sample": True, |
|
"streamer": streamer, |
|
} |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
|
|
response = "" |
|
for token in streamer: |
|
response += token |
|
yield response |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|