import gradio as gr from huggingface_hub import InferenceClient """ Copied from inference in colab notebook """ from transformers import AutoTokenizer , AutoModelForCausalLM , TextIteratorStreamer import torch from threading import Thread # Load model and tokenizer globally to avoid reloading for every request base_model = "Helsinki-NLP/europarl" model_path = "Mat17892/t5small_enfr_opus" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False) # Load the base model (e.g., LLaMA) base_model = AutoModelForCausalLM.from_pretrained(base_model) # Load LoRA adapter from peft import PeftModel model = PeftModel.from_pretrained(base_model, model_path) def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # Combine system message and history into a single prompt messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Tokenize the messages inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ) # Generate tokens incrementally streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { "input_ids": inputs, "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "do_sample": True, "streamer": streamer, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Yield responses as they are generated response = "" for token in streamer: response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()