iris / app.py
IST199655
a
3d5b038
raw
history blame
4.07 kB
import gradio as gr
from huggingface_hub import InferenceClient
"""
Copied from inference in colab notebook
"""
from transformers import LlamaForCausalLM, LlamaTokenizer
import torch
# Load model and tokenizer globally to avoid reloading for every request
model_path = "llama_lora_model_1"
# Load tokenizer
tokenizer = LlamaTokenizer.from_pretrained(model_path)
# Load model
model = LlamaForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float32, # Adjust based on your environment
device_map="cpu" # Use CPU for inference
)
# Define the response function
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
# Combine system message and history into a single prompt
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Create a single text prompt from the messages
prompt = ""
for msg in messages:
if msg["role"] == "system":
prompt += f"[System]: {msg['content']}\n\n"
elif msg["role"] == "user":
prompt += f"[User]: {msg['content']}\n\n"
elif msg["role"] == "assistant":
prompt += f"[Assistant]: {msg['content']}\n\n"
# Tokenize the prompt
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
input_ids = inputs.input_ids.to("cpu") # Ensure input is on the CPU
# Generate response
output_ids = model.generate(
input_ids,
max_length=input_ids.shape[1] + max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
# Decode the generated text
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Extract the assistant's response from the generated text
assistant_response = generated_text[len(prompt):].strip()
# Yield responses incrementally (simulate streaming)
response = ""
for token in assistant_response.split(): # Split tokens by whitespace
response += token + " "
yield response.strip()
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient(model="https://huggingface.co/Heit39/llama_lora_model_1")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()