IST199655
commited on
Commit
Β·
3d5b038
1
Parent(s):
b6079ea
- app.py +82 -71
- requirements.txt +3 -1
app.py
CHANGED
@@ -4,34 +4,83 @@ from huggingface_hub import InferenceClient
|
|
4 |
"""
|
5 |
Copied from inference in colab notebook
|
6 |
"""
|
7 |
-
# import torch
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
|
15 |
-
#
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# tokenizer = get_chat_template(
|
29 |
-
# tokenizer,
|
30 |
-
# chat_template = "llama-3.1",
|
31 |
-
# )
|
32 |
-
# FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
33 |
|
34 |
-
# # RUNNING INFERENCE ββββββββββββββββββββββββ
|
35 |
|
36 |
# def respond(
|
37 |
# message,
|
@@ -51,57 +100,19 @@ Copied from inference in colab notebook
|
|
51 |
|
52 |
# messages.append({"role": "user", "content": message})
|
53 |
|
54 |
-
#
|
55 |
-
# messages,
|
56 |
-
# tokenize = True,
|
57 |
-
# add_generation_prompt = True, # Must add for generation
|
58 |
-
# return_tensors = "pt",
|
59 |
-
# )
|
60 |
-
|
61 |
-
# outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True,
|
62 |
-
# temperature = 1.5, min_p = 0.1)
|
63 |
-
# response = tokenizer.batch_decode(outputs)
|
64 |
-
|
65 |
-
# yield response
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
max_tokens,
|
79 |
-
temperature,
|
80 |
-
top_p,
|
81 |
-
):
|
82 |
-
messages = [{"role": "system", "content": system_message}]
|
83 |
-
|
84 |
-
for val in history:
|
85 |
-
if val[0]:
|
86 |
-
messages.append({"role": "user", "content": val[0]})
|
87 |
-
if val[1]:
|
88 |
-
messages.append({"role": "assistant", "content": val[1]})
|
89 |
-
|
90 |
-
messages.append({"role": "user", "content": message})
|
91 |
-
|
92 |
-
response = ""
|
93 |
-
|
94 |
-
for message in client.chat_completion(
|
95 |
-
messages,
|
96 |
-
max_tokens=max_tokens,
|
97 |
-
stream=True,
|
98 |
-
temperature=temperature,
|
99 |
-
top_p=top_p,
|
100 |
-
):
|
101 |
-
token = message.choices[0].delta.content
|
102 |
-
|
103 |
-
response += token
|
104 |
-
yield response
|
105 |
|
106 |
|
107 |
"""
|
|
|
4 |
"""
|
5 |
Copied from inference in colab notebook
|
6 |
"""
|
|
|
7 |
|
8 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
9 |
+
import torch
|
10 |
|
11 |
+
# Load model and tokenizer globally to avoid reloading for every request
|
12 |
+
model_path = "llama_lora_model_1"
|
13 |
|
14 |
+
# Load tokenizer
|
15 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
16 |
|
17 |
+
# Load model
|
18 |
+
model = LlamaForCausalLM.from_pretrained(
|
19 |
+
model_path,
|
20 |
+
torch_dtype=torch.float32, # Adjust based on your environment
|
21 |
+
device_map="cpu" # Use CPU for inference
|
22 |
+
)
|
23 |
|
24 |
+
# Define the response function
|
25 |
+
def respond(
|
26 |
+
message: str,
|
27 |
+
history: list[tuple[str, str]],
|
28 |
+
system_message: str,
|
29 |
+
max_tokens: int,
|
30 |
+
temperature: float,
|
31 |
+
top_p: float,
|
32 |
+
):
|
33 |
+
# Combine system message and history into a single prompt
|
34 |
+
messages = [{"role": "system", "content": system_message}]
|
35 |
+
for val in history:
|
36 |
+
if val[0]:
|
37 |
+
messages.append({"role": "user", "content": val[0]})
|
38 |
+
if val[1]:
|
39 |
+
messages.append({"role": "assistant", "content": val[1]})
|
40 |
+
messages.append({"role": "user", "content": message})
|
41 |
+
|
42 |
+
# Create a single text prompt from the messages
|
43 |
+
prompt = ""
|
44 |
+
for msg in messages:
|
45 |
+
if msg["role"] == "system":
|
46 |
+
prompt += f"[System]: {msg['content']}\n\n"
|
47 |
+
elif msg["role"] == "user":
|
48 |
+
prompt += f"[User]: {msg['content']}\n\n"
|
49 |
+
elif msg["role"] == "assistant":
|
50 |
+
prompt += f"[Assistant]: {msg['content']}\n\n"
|
51 |
+
|
52 |
+
# Tokenize the prompt
|
53 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
54 |
+
input_ids = inputs.input_ids.to("cpu") # Ensure input is on the CPU
|
55 |
+
|
56 |
+
# Generate response
|
57 |
+
output_ids = model.generate(
|
58 |
+
input_ids,
|
59 |
+
max_length=input_ids.shape[1] + max_tokens,
|
60 |
+
temperature=temperature,
|
61 |
+
top_p=top_p,
|
62 |
+
do_sample=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
# Decode the generated text
|
66 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
67 |
+
|
68 |
+
# Extract the assistant's response from the generated text
|
69 |
+
assistant_response = generated_text[len(prompt):].strip()
|
70 |
+
|
71 |
+
# Yield responses incrementally (simulate streaming)
|
72 |
+
response = ""
|
73 |
+
for token in assistant_response.split(): # Split tokens by whitespace
|
74 |
+
response += token + " "
|
75 |
+
yield response.strip()
|
76 |
+
|
77 |
+
|
78 |
+
"""
|
79 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
80 |
+
"""
|
81 |
+
# client = InferenceClient(model="https://huggingface.co/Heit39/llama_lora_model_1")
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
84 |
|
85 |
# def respond(
|
86 |
# message,
|
|
|
100 |
|
101 |
# messages.append({"role": "user", "content": message})
|
102 |
|
103 |
+
# response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# for message in client.chat_completion(
|
106 |
+
# messages,
|
107 |
+
# max_tokens=max_tokens,
|
108 |
+
# stream=True,
|
109 |
+
# temperature=temperature,
|
110 |
+
# top_p=top_p,
|
111 |
+
# ):
|
112 |
+
# token = message.choices[0].delta.content
|
113 |
+
|
114 |
+
# response += token
|
115 |
+
# yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
|
118 |
"""
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
|
3 |
-
unsloth
|
|
|
|
|
|
1 |
huggingface_hub==0.25.2
|
2 |
|
3 |
+
unsloth
|
4 |
+
transformers
|
5 |
+
accelerate
|