Spaces:
Running
Running
# import requests | |
# import json | |
# # Replace with your actual Hugging Face Spaces URL | |
# SPACE_API_URL = "https://heheboi0769-nexus-nlp-model.hf.space//?text=Breaking: Stock market crashes!" | |
# # Add the text as a query parameter since the app uses st.experimental_get_query_params() | |
# text = "Breaking: Stock market crashes!" | |
# url_with_params = f"{SPACE_API_URL}?text={text}" | |
# # Send request to Streamlit API | |
# response = requests.get(url_with_params) | |
# # Parse JSON response | |
# if response.status_code == 200: | |
# result = response.json() | |
# print(f"Prediction: {result['prediction']} (Confidence: {result['confidence']*100:.2f}%)") | |
# else: | |
# print("Error: Could not get prediction") | |
import requests | |
import urllib.parse | |
def test_model(): | |
# Base URL for your Streamlit app | |
base_url = "https://heheboi0769-nexus-nlp-model.hf.space/api" | |
# Test text | |
text = "Breaking: Stock market crashes!" | |
# Make request to the Streamlit app's API endpoint | |
response = requests.post( | |
f"{base_url}/predict", | |
headers={ | |
"Content-Type": "application/json", | |
"Authorization": "Bearer your_api_key_here" | |
}, | |
json={"text": text} | |
) | |
# Print response for debugging | |
print(f"Status Code: {response.status_code}") | |
print(f"Response: {response.text}") | |
if response.status_code == 200: | |
result = response.json() | |
print(f"Prediction: {result['prediction']}") | |
print(f"Confidence: {result['confidence']*100:.2f}%") | |
if __name__ == "__main__": | |
test_model() |