# import requests # import json # # Replace with your actual Hugging Face Spaces URL # SPACE_API_URL = "https://heheboi0769-nexus-nlp-model.hf.space//?text=Breaking: Stock market crashes!" # # Add the text as a query parameter since the app uses st.experimental_get_query_params() # text = "Breaking: Stock market crashes!" # url_with_params = f"{SPACE_API_URL}?text={text}" # # Send request to Streamlit API # response = requests.get(url_with_params) # # Parse JSON response # if response.status_code == 200: # result = response.json() # print(f"Prediction: {result['prediction']} (Confidence: {result['confidence']*100:.2f}%)") # else: # print("Error: Could not get prediction") import requests import urllib.parse def test_model(): # Base URL for your Streamlit app base_url = "https://heheboi0769-nexus-nlp-model.hf.space/api" # Test text text = "Breaking: Stock market crashes!" # Make request to the Streamlit app's API endpoint response = requests.post( f"{base_url}/predict", headers={ "Content-Type": "application/json", "Authorization": "Bearer your_api_key_here" }, json={"text": text} ) # Print response for debugging print(f"Status Code: {response.status_code}") print(f"Response: {response.text}") if response.status_code == 200: result = response.json() print(f"Prediction: {result['prediction']}") print(f"Confidence: {result['confidence']*100:.2f}%") if __name__ == "__main__": test_model()