NSFW-detection / app.py
seawolf2357's picture
Update app.py
b7251fb verified
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import AutoPipelineForText2Image
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
lora_id = "seawolf2357/nsfw-detection" # LoRA model
print("Loading pipeline...")
# Use AutoPipelineForText2Image which has better compatibility with LoRA loading
pipeline = AutoPipelineForText2Image.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
use_safetensors=True
)
pipeline = pipeline.to(device)
# Try to load the LoRA with direct method (simpler approach)
print("Loading LoRA weights...")
try:
pipeline.load_lora_weights(lora_id)
print("LoRA weights loaded successfully!")
lora_loaded = True
except Exception as e:
print(f"Could not load LoRA weights using standard method: {e}")
print("Continuing without LoRA functionality.")
lora_loaded = False
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
# Function to ensure "nsfw" and "[trigger]" are in the prompt
def process_prompt(prompt):
# Add "nsfw" prefix if not already present
if not prompt.lower().startswith("nsfw "):
prompt = "nsfw " + prompt
# Add "[trigger]" suffix if not already present
if not prompt.lower().endswith("[trigger]"):
if prompt.endswith(" "):
prompt = prompt + "[trigger]"
else:
prompt = prompt + " [trigger]"
return prompt
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
# Process the prompt to ensure it has the required format
processed_prompt = process_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
# Try with cross_attention_kwargs if LoRA was loaded successfully
if lora_loaded:
image = pipeline(
prompt=processed_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
else:
# Fall back to standard generation if LoRA wasn't loaded
image = pipeline(
prompt=processed_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
except Exception as e:
print(f"Error during inference with cross_attention_kwargs: {e}")
# Fall back to standard generation without LoRA parameters
image = pipeline(
prompt=processed_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# Save the generated image
filepath = save_generated_image(image, processed_prompt)
# Return the image, seed, and processed prompt
return image, seed, processed_prompt
examples = [
"A young couple, their bodies glistening with sweat, make love in the rain, the woman"
]
# Brighter custom CSS with vibrant colors
custom_css = """
:root {
--color-primary: #FF9E6C;
--color-secondary: #FFD8A9;
}
footer {
visibility: hidden;
}
.gradio-container {
background: linear-gradient(to right, #FFF4E0, #FFEDDB);
}
.title {
color: #E25822 !important;
font-size: 2.5rem !important;
font-weight: 700 !important;
text-align: center;
margin: 1rem 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
.subtitle {
color: #2B3A67 !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 2rem;
}
.model-description {
background-color: rgba(255, 255, 255, 0.7);
border-radius: 10px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border-left: 5px solid #E25822;
}
button.primary {
background-color: #E25822 !important;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
"""
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">NSFW Detection STUDIO</div>')
# Main generation interface
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (nsfw and [trigger] will be added automatically)",
container=False,
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Image(label="Result", show_label=False)
processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed, processed_prompt_display],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, processed_prompt_display],
)
demo.queue()
demo.launch()