Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,125 Bytes
35ac15a 4a1aee0 35ac15a 011e303 35ac15a 53714f5 b7251fb 35ac15a b7251fb 35ac15a 4a73dac b7251fb 35ac15a b7251fb 35ac15a 4a73dac 35ac15a 4a73dac 35ac15a 71e9891 b7251fb 71e9891 b7251fb 71e9891 35ac15a 4a73dac 35ac15a b7251fb 448c2fc b7251fb 35ac15a 4a73dac 35ac15a b7251fb 35ac15a b7251fb 35ac15a b7251fb 35ac15a b7251fb 35ac15a b7251fb 35ac15a b7251fb 35ac15a b7251fb 35ac15a b7251fb 35ac15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import AutoPipelineForText2Image
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
lora_id = "seawolf2357/nsfw-detection" # LoRA model
print("Loading pipeline...")
# Use AutoPipelineForText2Image which has better compatibility with LoRA loading
pipeline = AutoPipelineForText2Image.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
use_safetensors=True
)
pipeline = pipeline.to(device)
# Try to load the LoRA with direct method (simpler approach)
print("Loading LoRA weights...")
try:
pipeline.load_lora_weights(lora_id)
print("LoRA weights loaded successfully!")
lora_loaded = True
except Exception as e:
print(f"Could not load LoRA weights using standard method: {e}")
print("Continuing without LoRA functionality.")
lora_loaded = False
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
# Function to ensure "nsfw" and "[trigger]" are in the prompt
def process_prompt(prompt):
# Add "nsfw" prefix if not already present
if not prompt.lower().startswith("nsfw "):
prompt = "nsfw " + prompt
# Add "[trigger]" suffix if not already present
if not prompt.lower().endswith("[trigger]"):
if prompt.endswith(" "):
prompt = prompt + "[trigger]"
else:
prompt = prompt + " [trigger]"
return prompt
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
# Process the prompt to ensure it has the required format
processed_prompt = process_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
# Try with cross_attention_kwargs if LoRA was loaded successfully
if lora_loaded:
image = pipeline(
prompt=processed_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lora_scale}
).images[0]
else:
# Fall back to standard generation if LoRA wasn't loaded
image = pipeline(
prompt=processed_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
except Exception as e:
print(f"Error during inference with cross_attention_kwargs: {e}")
# Fall back to standard generation without LoRA parameters
image = pipeline(
prompt=processed_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# Save the generated image
filepath = save_generated_image(image, processed_prompt)
# Return the image, seed, and processed prompt
return image, seed, processed_prompt
examples = [
"A young couple, their bodies glistening with sweat, make love in the rain, the woman"
]
# Brighter custom CSS with vibrant colors
custom_css = """
:root {
--color-primary: #FF9E6C;
--color-secondary: #FFD8A9;
}
footer {
visibility: hidden;
}
.gradio-container {
background: linear-gradient(to right, #FFF4E0, #FFEDDB);
}
.title {
color: #E25822 !important;
font-size: 2.5rem !important;
font-weight: 700 !important;
text-align: center;
margin: 1rem 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
.subtitle {
color: #2B3A67 !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 2rem;
}
.model-description {
background-color: rgba(255, 255, 255, 0.7);
border-radius: 10px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border-left: 5px solid #E25822;
}
button.primary {
background-color: #E25822 !important;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
"""
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">NSFW Detection STUDIO</div>')
# Main generation interface
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (nsfw and [trigger] will be added automatically)",
container=False,
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Image(label="Result", show_label=False)
processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed, processed_prompt_display],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, processed_prompt_display],
)
demo.queue()
demo.launch() |