File size: 8,125 Bytes
35ac15a
4a1aee0
35ac15a
 
011e303
 
35ac15a
53714f5
b7251fb
35ac15a
 
 
 
 
 
 
 
 
b7251fb
35ac15a
4a73dac
b7251fb
 
 
 
 
 
35ac15a
 
b7251fb
 
 
 
 
 
 
 
 
 
 
35ac15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a73dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ac15a
 
 
 
 
 
 
 
 
 
 
 
4a73dac
 
 
35ac15a
 
 
 
71e9891
b7251fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e9891
b7251fb
 
71e9891
 
 
 
 
 
 
 
35ac15a
 
4a73dac
35ac15a
b7251fb
 
448c2fc
b7251fb
 
 
35ac15a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a73dac
35ac15a
b7251fb
 
 
 
 
 
 
 
 
 
 
35ac15a
b7251fb
 
35ac15a
b7251fb
 
 
 
 
 
 
35ac15a
b7251fb
35ac15a
b7251fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ac15a
b7251fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ac15a
b7251fb
 
 
 
 
35ac15a
 
 
 
 
 
 
 
 
 
 
 
 
 
b7251fb
35ac15a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import AutoPipelineForText2Image
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
lora_id = "seawolf2357/nsfw-detection"  # LoRA model

print("Loading pipeline...")
# Use AutoPipelineForText2Image which has better compatibility with LoRA loading
pipeline = AutoPipelineForText2Image.from_pretrained(
    repo_id, 
    torch_dtype=torch.bfloat16,
    use_safetensors=True
)
pipeline = pipeline.to(device)

# Try to load the LoRA with direct method (simpler approach)
print("Loading LoRA weights...")
try:
    pipeline.load_lora_weights(lora_id)
    print("LoRA weights loaded successfully!")
    lora_loaded = True
except Exception as e:
    print(f"Could not load LoRA weights using standard method: {e}")
    print("Continuing without LoRA functionality.")
    lora_loaded = False

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

# Function to ensure "nsfw" and "[trigger]" are in the prompt
def process_prompt(prompt):
    # Add "nsfw" prefix if not already present
    if not prompt.lower().startswith("nsfw "):
        prompt = "nsfw " + prompt
    
    # Add "[trigger]" suffix if not already present
    if not prompt.lower().endswith("[trigger]"):
        if prompt.endswith(" "):
            prompt = prompt + "[trigger]"
        else:
            prompt = prompt + " [trigger]"
    
    return prompt

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    # Process the prompt to ensure it has the required format
    processed_prompt = process_prompt(prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    try:
        # Try with cross_attention_kwargs if LoRA was loaded successfully
        if lora_loaded:
            image = pipeline(
                prompt=processed_prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
                cross_attention_kwargs={"scale": lora_scale}
            ).images[0]
        else:
            # Fall back to standard generation if LoRA wasn't loaded
            image = pipeline(
                prompt=processed_prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator,
            ).images[0]
    except Exception as e:
        print(f"Error during inference with cross_attention_kwargs: {e}")
        # Fall back to standard generation without LoRA parameters
        image = pipeline(
            prompt=processed_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, processed_prompt)
    
    # Return the image, seed, and processed prompt
    return image, seed, processed_prompt

examples = [
    "A young couple, their bodies glistening with sweat, make love in the rain, the woman"
]

# Brighter custom CSS with vibrant colors
custom_css = """
:root {
    --color-primary: #FF9E6C;
    --color-secondary: #FFD8A9;
}
footer {
    visibility: hidden;
}
.gradio-container {
    background: linear-gradient(to right, #FFF4E0, #FFEDDB);
}
.title {
    color: #E25822 !important;
    font-size: 2.5rem !important;
    font-weight: 700 !important;
    text-align: center;
    margin: 1rem 0;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
.subtitle {
    color: #2B3A67 !important;
    font-size: 1.2rem !important;
    text-align: center;
    margin-bottom: 2rem;
}
.model-description {
    background-color: rgba(255, 255, 255, 0.7);
    border-radius: 10px;
    padding: 20px;
    margin: 20px 0;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    border-left: 5px solid #E25822;
}
button.primary {
    background-color: #E25822 !important;
}
button:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
"""

with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title">NSFW Detection STUDIO</div>')
    
    # Main generation interface
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt (nsfw and [trigger] will be added automatically)",
                container=False,
            )
            run_button = gr.Button("Generate", variant="primary", scale=0)

        result = gr.Image(label="Result", show_label=False)
        processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )
                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                )

        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result, seed, processed_prompt_display],
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, processed_prompt_display],
    )

demo.queue()
demo.launch()