Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import random | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import torch | |
from transformers import pipeline as transformers_pipeline | |
import re | |
# Device selection for image generation (GPU if available) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Stable Diffusion XL pipeline | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"votepurchase/waiNSFWIllustrious_v120", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(device) | |
# Force modules to fp16 for memory efficiency | |
pipe.text_encoder.to(torch.float16) | |
pipe.text_encoder_2.to(torch.float16) | |
pipe.vae.to(torch.float16) | |
pipe.unet.to(torch.float16) | |
# Korean → English translator (CPU only) | |
translator = transformers_pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device=-1, # -1 forces CPU | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1216 | |
korean_regex = re.compile("[\uac00-\ud7af]+") | |
def maybe_translate(text: str) -> str: | |
"""Translate Korean text to English if Korean characters are detected.""" | |
if korean_regex.search(text): | |
translation = translator(text, max_length=256, clean_up_tokenization_spaces=True) | |
return translation[0]["translation_text"] | |
return text | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
prompt = maybe_translate(prompt) | |
negative_prompt = maybe_translate(negative_prompt) | |
if len(prompt.split()) > 60: | |
print("Warning: Prompt may be too long and will be truncated by the model") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
try: | |
output_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return output_image | |
except RuntimeError as e: | |
print(f"Error during generation: {e}") | |
error_img = Image.new("RGB", (width, height), color=(0, 0, 0)) | |
return error_img | |
# Custom styling – bright pastel theme | |
css = """ | |
body {background: #f2f1f7; color: #222; font-family: 'Noto Sans', sans-serif;} | |
#col-container {margin: 0 auto; max-width: 640px;} | |
.gr-button {background: #7fbdf6; color: #ffffff; border-radius: 8px;} | |
#prompt-box textarea {font-size: 1.1rem; height: 3rem; background: #ffffff; color: #222;} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
""" | |
## 🖌️ Stable Diffusion XL Playground | |
Generate high‑quality illustrations with a single prompt. | |
**Tip:** Write in Korean or English. Korean will be translated automatically. | |
""" | |
) | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
elem_id="prompt-box", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt (60 words max)", | |
) | |
run_button = gr.Button("Generate", scale=0) | |
result = gr.Image(label="", show_label=False) | |
# Adult anime‑style example prompts | |
examples = gr.Examples( | |
examples=[ | |
["Seductive anime woman lounging in a dimly lit bar, adult anime style, ultra‑detail"], | |
["Moody mature anime scene of two lovers kissing under neon rain, sensual atmosphere"], | |
["기모노를 입은 일본 여자를 남자가 뒤에서 강간한다 , candle‑lit boudoir, adult anime aesthetic"], | |
["속옷만 입은 남녀가 격정적인 키스를 하고있다, vibrant neon, adult anime"], | |
["아름다운 러시아 여자가 섹시한 속옷을 입고 묘한 포즈로 침대에 앉아있다, dramatic spotlight, adult anime style"], | |
], | |
inputs=[prompt], | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="nsfw, low quality, watermark, signature", | |
) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024 | |
) | |
height = gr.Slider( | |
label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024 | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7 | |
) | |
num_inference_steps = gr.Slider( | |
label="Inference steps", minimum=1, maximum=28, step=1, value=28 | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result], | |
) | |
demo.queue().launch() | |