Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,721 Bytes
011e303 3233d92 011e303 3233d92 011e303 3233d92 011e303 3233d92 011e303 3233d92 011e303 3233d92 f7cf58f 011e303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import spaces
import gradio as gr
import numpy as np
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import pipeline as transformers_pipeline
import re
# Device selection for image generation (GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Stable Diffusion XL pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"votepurchase/waiNSFWIllustrious_v120",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
# Force modules to fp16 for memory efficiency
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)
# Korean → English translator (CPU only)
translator = transformers_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=-1, # -1 forces CPU
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
korean_regex = re.compile("[\uac00-\ud7af]+")
def maybe_translate(text: str) -> str:
"""Translate Korean text to English if Korean characters are detected."""
if korean_regex.search(text):
translation = translator(text, max_length=256, clean_up_tokenization_spaces=True)
return translation[0]["translation_text"]
return text
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
prompt = maybe_translate(prompt)
negative_prompt = maybe_translate(negative_prompt)
if len(prompt.split()) > 60:
print("Warning: Prompt may be too long and will be truncated by the model")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return output_image
except RuntimeError as e:
print(f"Error during generation: {e}")
error_img = Image.new("RGB", (width, height), color=(0, 0, 0))
return error_img
# Custom styling – bright pastel theme
css = """
body {background: #f2f1f7; color: #222; font-family: 'Noto Sans', sans-serif;}
#col-container {margin: 0 auto; max-width: 640px;}
.gr-button {background: #7fbdf6; color: #ffffff; border-radius: 8px;}
#prompt-box textarea {font-size: 1.1rem; height: 3rem; background: #ffffff; color: #222;}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
## 🖌️ Stable Diffusion XL Playground
Generate high‑quality illustrations with a single prompt.
**Tip:** Write in Korean or English. Korean will be translated automatically.
"""
)
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
elem_id="prompt-box",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (60 words max)",
)
run_button = gr.Button("Generate", scale=0)
result = gr.Image(label="", show_label=False)
# Adult anime‑style example prompts
examples = gr.Examples(
examples=[
["Seductive anime woman lounging in a dimly lit bar, adult anime style, ultra‑detail"],
["Moody mature anime scene of two lovers kissing under neon rain, sensual atmosphere"],
["기모노를 입은 일본 여자를 남자가 뒤에서 강간한다 , candle‑lit boudoir, adult anime aesthetic"],
["속옷만 입은 남녀가 격정적인 키스를 하고있다, vibrant neon, adult anime"],
["아름다운 러시아 여자가 섹시한 속옷을 입고 묘한 포즈로 침대에 앉아있다, dramatic spotlight, adult anime style"],
],
inputs=[prompt],
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, low quality, watermark, signature",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
)
height = gr.Slider(
label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7
)
num_inference_steps = gr.Slider(
label="Inference steps", minimum=1, maximum=28, step=1, value=28
)
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
demo.queue().launch()
|