File size: 5,721 Bytes
011e303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233d92
011e303
3233d92
011e303
3233d92
 
011e303
 
 
 
 
 
3233d92
011e303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233d92
011e303
 
3233d92
 
f7cf58f
 
 
011e303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import spaces
import gradio as gr
import numpy as np
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import pipeline as transformers_pipeline
import re

# Device selection for image generation (GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Stable Diffusion XL pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    "votepurchase/waiNSFWIllustrious_v120",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

# Force modules to fp16 for memory efficiency
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)

# Korean → English translator (CPU only)
translator = transformers_pipeline(
    "translation",
    model="Helsinki-NLP/opus-mt-ko-en",
    device=-1,  # -1 forces CPU
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
korean_regex = re.compile("[\uac00-\ud7af]+")

def maybe_translate(text: str) -> str:
    """Translate Korean text to English if Korean characters are detected."""
    if korean_regex.search(text):
        translation = translator(text, max_length=256, clean_up_tokenization_spaces=True)
        return translation[0]["translation_text"]
    return text

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    prompt = maybe_translate(prompt)
    negative_prompt = maybe_translate(negative_prompt)

    if len(prompt.split()) > 60:
        print("Warning: Prompt may be too long and will be truncated by the model")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)

    try:
        output_image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
        return output_image
    except RuntimeError as e:
        print(f"Error during generation: {e}")
        error_img = Image.new("RGB", (width, height), color=(0, 0, 0))
        return error_img

# Custom styling – bright pastel theme
css = """
body {background: #f2f1f7; color: #222; font-family: 'Noto Sans', sans-serif;}
#col-container {margin: 0 auto; max-width: 640px;}
.gr-button {background: #7fbdf6; color: #ffffff; border-radius: 8px;}
#prompt-box textarea {font-size: 1.1rem; height: 3rem; background: #ffffff; color: #222;}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        ## 🖌️ Stable Diffusion XL Playground  
        Generate high‑quality illustrations with a single prompt.  
        **Tip:** Write in Korean or English. Korean will be translated automatically.
        """
    )

    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                elem_id="prompt-box",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt (60 words max)",
            )
            run_button = gr.Button("Generate", scale=0)

        result = gr.Image(label="", show_label=False)

        # Adult anime‑style example prompts
        examples = gr.Examples(
            examples=[
                ["Seductive anime woman lounging in a dimly lit bar, adult anime style, ultra‑detail"],
                ["Moody mature anime scene of two lovers kissing under neon rain, sensual atmosphere"],
                ["기모노를 입은 일본 여자를 남자가 뒤에서 강간한다 , candle‑lit boudoir, adult anime aesthetic"],
                ["속옷만 입은 남녀가 격정적인 키스를 하고있다, vibrant neon, adult anime"],
                ["아름다운 러시아 여자가 섹시한 속옷을 입고 묘한 포즈로 침대에 앉아있다, dramatic spotlight, adult anime style"],
            ],
            inputs=[prompt],
        )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, low quality, watermark, signature",
            )

            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
                )
                height = gr.Slider(
                    label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7
                )
                num_inference_steps = gr.Slider(
                    label="Inference steps", minimum=1, maximum=28, step=1, value=28
                )

    run_button.click(
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result],
    )

demo.queue().launch()