Spaces:
Running
Running
File size: 8,870 Bytes
cd85011 c590636 cd85011 c590636 cd85011 c590636 cd85011 c590636 cd85011 c590636 cd85011 705cd38 cd85011 264f686 cd85011 116ee61 cd85011 66394c9 116ee61 cd85011 116ee61 cd85011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import pandas as pd
import streamlit as st
from annotated_text import annotated_text
from streamlit_option_menu import option_menu
from sentiment_analysis import SentimentAnalysis
from keyword_extraction import KeywordExtractor
from part_of_speech_tagging import POSTagging
from emotion_detection import EmotionDetection
from named_entity_recognition import NamedEntityRecognition
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
@st.cache_resource
def load_sentiment_model():
return SentimentAnalysis()
@st.cache_resource
def load_keyword_model():
return KeywordExtractor()
@st.cache_resource
def load_pos_model():
return POSTagging()
@st.cache_resource
def load_emotion_model():
return EmotionDetection()
@st.cache_resource
def load_ner_model():
return NamedEntityRecognition()
sentiment_analyzer = load_sentiment_model()
keyword_extractor = load_keyword_model()
pos_tagger = load_pos_model()
emotion_detector = load_emotion_model()
ner = load_ner_model()
example_text = "Diwansing girase recently gave a motivational talk at Google Headquarters in California. The event was organized by Hugging Face and attended by more than 200 developers. People described the event as inspiring, energetic, and absolutely fantastic Later, Rohit also announced a collaboration with Microsoft to develop AI tools for students.Despite some concerns about data privacy, the overall response from the audience was extremely positive"
with st.sidebar:
page = option_menu(menu_title='Menu',
menu_icon="robot",
options=["Welcome!",
"Sentiment Analysis",
"Keyword Extraction",
"Part of Speech Tagging",
"Emotion Detection",
"Named Entity Recognition"],
icons=["house-door",
"chat-dots",
"key",
"tag",
"emoji-heart-eyes",
"building"],
default_index=0
)
st.title('Multi Task NLP Toolkit')
if page == "Welcome!":
st.header('Welcome!')
st.markdown("")
st.write(
"""
"""
)
st.subheader("Quickstart")
st.write(
"""
Replace the example text below and flip through the pages in the menu to perform NLP tasks on-demand!
Feel free to use the example text for a test run.
"""
)
text = st.text_area("Paste text here", value=example_text)
st.subheader("Introduction")
st.write("""
This application is a part of our mini project, built to showcase the capabilities of modern Natural Language
Processing using open-source tools. It reflects the collaborative effort of our team and highlights what’s possible
thanks to the generous contributions of the developer community.
We developed this tool using Streamlit, Hugging Face Transformers, Transformers-Interpret, NLTK, SpaCy, and several other
powerful open-source Python libraries and models.
Utilizing this tool you will be able to perform a multitude of Natural Language Processing Tasks on a range of
different tasks. All you need to do is paste your input, select your task, and hit the start button!
* This application currently supports:
* Sentiment Analysis
* Keyword Extraction
* Part of Speech Tagging
* Emotion Detection
* Named Entity Recognition
* Project Team:
1) Diwansing Girase
2) Kiran Patil
3) Krishita Patil
4) Rohit Bedse
If you would like to contribute yourself, feel free to fork the Github repository listed below and submit a merge request.
"""
)
st.subheader("Notes")
st.write(
"""
* This dashboard was constructed by myself, but every resource used is open-source! If you are interested in my other works you can view them here:
[Project Github](https://github.com/GiraseDeva01/NLP_Project_2k25)
* The prediction justification for some of the tasks are printed as the model views them. For this reason the text may contain special tokens like [CLS] or [SEP] or even hashtags splitting words. If you are are familiar with language models you will recognize these, if you do not have prior experience with language models you can ignore these characters.
"""
)
elif page == "Sentiment Analysis":
st.header('Sentiment Analysis')
st.markdown("")
st.write(
"""
"""
)
text = st.text_area("Paste text here", value=example_text)
if st.button('🔥 Run!'):
with st.spinner("Loading..."):
preds, html = sentiment_analyzer.run(text)
st.success('All done!')
st.write("")
st.subheader("Sentiment Predictions")
st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
st.write("")
st.subheader("Sentiment Justification")
raw_html = html._repr_html_()
st.components.v1.html(raw_html, height=500)
elif page == "Keyword Extraction":
st.header('Keyword Extraction')
st.markdown("")
st.write(
"""
"""
)
text = st.text_area("Paste text here", value=example_text)
max_keywords = st.slider('# of Keywords Max Limit', min_value=1, max_value=10, value=5, step=1)
if st.button('🔥 Run!'):
with st.spinner("Loading..."):
annotation, keywords = keyword_extractor.generate(text, max_keywords)
st.success('All done!')
if annotation:
st.subheader("Keyword Annotation")
st.write("")
annotated_text(*annotation)
st.text("")
st.subheader("Extracted Keywords")
st.write("")
df = pd.DataFrame(keywords, columns=['Extracted Keywords'])
csv = df.to_csv(index=False).encode('utf-8')
st.download_button('Download Keywords to CSV', csv, file_name='news_intelligence_keywords.csv')
data_table = st.table(df)
elif page == "Part of Speech Tagging":
st.header('Part of Speech Tagging')
st.markdown("")
st.write(
"""
"""
)
text = st.text_area("Paste text here", value=example_text)
if st.button('🔥 Run!'):
with st.spinner("Loading..."):
preds = pos_tagger.classify(text)
st.success('All done!')
st.write("")
st.subheader("Part of Speech tags")
annotated_text(*preds)
st.write("")
st.components.v1.iframe('https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html', height=1000)
elif page == "Emotion Detection":
st.header('Emotion Detection')
st.markdown("")
st.write(
"""
"""
)
text = st.text_area("Paste text here", value=example_text)
if st.button('🔥 Run!'):
with st.spinner("Loading..."):
preds, html = emotion_detector.run(text)
st.success('All done!')
st.write("")
st.subheader("Emotion Predictions")
st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
raw_html = html._repr_html_()
st.write("")
st.subheader("Emotion Justification")
st.components.v1.html(raw_html, height=500)
elif page == "Named Entity Recognition":
st.header('Named Entity Recognition')
st.markdown("")
st.write(
"""
"""
)
text = st.text_area("Paste text here", value=example_text)
if st.button('🔥 Run!'):
with st.spinner("Loading..."):
preds, ner_annotation = ner.classify(text)
st.success('All done!')
st.write("")
st.subheader("NER Predictions")
annotated_text(*ner_annotation)
st.write("")
st.subheader("NER Prediction Metadata")
st.write(preds)
|