Harshb11 commited on
Commit
cd85011
·
1 Parent(s): b5d93d5

first-commit

Browse files
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .DS_Store
2
+ .idea/
.streamlit/config.toml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [theme]
2
+ primaryColor="#f58442"
3
+ backgroundColor="#FFFFFF"
4
+ secondaryBackgroundColor="#F0F2F6"
5
+ textColor="#262730"
6
+ font="sans serif"
app.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ from annotated_text import annotated_text
4
+ from streamlit_option_menu import option_menu
5
+ from sentiment_analysis import SentimentAnalysis
6
+ from keyword_extraction import KeywordExtractor
7
+ from part_of_speech_tagging import POSTagging
8
+ from emotion_detection import EmotionDetection
9
+ from named_entity_recognition import NamedEntityRecognition
10
+
11
+ hide_streamlit_style = """
12
+ <style>
13
+ #MainMenu {visibility: hidden;}
14
+ footer {visibility: hidden;}
15
+ </style>
16
+ """
17
+ st.markdown(hide_streamlit_style, unsafe_allow_html=True)
18
+
19
+
20
+ @st.cache(allow_output_mutation=True)
21
+ def load_sentiment_model():
22
+ return SentimentAnalysis()
23
+
24
+ @st.cache(allow_output_mutation=True)
25
+ def load_keyword_model():
26
+ return KeywordExtractor()
27
+
28
+ @st.cache(allow_output_mutation=True)
29
+ def load_pos_model():
30
+ return POSTagging()
31
+
32
+ @st.cache(allow_output_mutation=True)
33
+ def load_emotion_model():
34
+ return EmotionDetection()
35
+
36
+ @st.cache(allow_output_mutation=True)
37
+ def load_ner_model():
38
+ return NamedEntityRecognition()
39
+
40
+
41
+ sentiment_analyzer = load_sentiment_model()
42
+ keyword_extractor = load_keyword_model()
43
+ pos_tagger = load_pos_model()
44
+ emotion_detector = load_emotion_model()
45
+ ner = load_ner_model()
46
+
47
+ example_text = "This is example text that contains both names of organizations like Hugging Face and cities like New York, all while portraying an upbeat attitude."
48
+
49
+ with st.sidebar:
50
+ page = option_menu(menu_title='Menu',
51
+ menu_icon="robot",
52
+ options=["Welcome!",
53
+ "Sentiment Analysis",
54
+ "Keyword Extraction",
55
+ "Part of Speech Tagging",
56
+ "Emotion Detection",
57
+ "Named Entity Recognition"],
58
+ icons=["house-door",
59
+ "chat-dots",
60
+ "key",
61
+ "tag",
62
+ "emoji-heart-eyes",
63
+ "building"],
64
+ default_index=0
65
+ )
66
+
67
+ st.title('Open-source NLP')
68
+
69
+ if page == "Welcome!":
70
+ st.header('Welcome!')
71
+
72
+ st.markdown("![Alt Text](https://media.giphy.com/media/2fEvoZ9tajMxq/giphy.gif)")
73
+ st.write(
74
+ """
75
+
76
+
77
+ """
78
+ )
79
+
80
+ st.subheader("Quickstart")
81
+ st.write(
82
+ """
83
+ Replace the example text below and flip through the pages in the menu to perform NLP tasks on-demand!
84
+ Feel free to use the example text for a test run.
85
+ """
86
+ )
87
+
88
+ text = st.text_area("Paste text here", value=example_text)
89
+
90
+ st.subheader("Introduction")
91
+ st.write("""
92
+ Hello! This application is a celebration of open-source and the power that programmers have been granted today
93
+ by those who give back to the community. This tool was constructed using Streamlit, Huggingface Transformers,
94
+ Transformers-Interpret, NLTK, Spacy, amongst other open-source Python libraries and models.
95
+
96
+ Utilizing this tool you will be able to perform a multitude of Natural Language Processing Tasks on a range of
97
+ different tasks. All you need to do is paste your input, select your task, and hit the start button!
98
+
99
+ * This application currently supports:
100
+ * Sentiment Analysis
101
+ * Keyword Extraction
102
+ * Part of Speech Tagging
103
+ * Emotion Detection
104
+ * Named Entity Recognition
105
+
106
+ More features may be added in the future including article/tweet/youtube input, improved text annotation, model quality improvements,
107
+ depending on community feedback. Please reach out to me at [email protected] or at my Linkedin page listed
108
+ below if you have ideas or suggestions for improvement.
109
+
110
+ If you would like to contribute yourself, feel free to fork the Github repository listed below and submit a merge request.
111
+ """
112
+ )
113
+ st.subheader("Notes")
114
+ st.write(
115
+ """
116
+ * This dashboard was constructed by myself, but every resource used is open-source! If you are interested in my other works you can view them here:
117
+
118
+ [Project Github](https://github.com/MiesnerJacob/Multi-task-NLP-dashboard)
119
+
120
+ [Jacob Miesner's Github](https://github.com/MiesnerJacob)
121
+
122
+ [Jacob Miesner's Linkedin](https://www.linkedin.com/in/jacob-miesner-885050125/)
123
+
124
+ [Jacob Miesner's Website](https://www.jacobmiesner.com)
125
+
126
+ * The prediction justification for some of the tasks are printed as the model views them. For this reason the text may contain special tokens like [CLS] or [SEP] or even hashtags splitting words. If you are are familiar with language models you will recognize these, if you do not have prior experience with language models you can ignore these characters.
127
+ """
128
+ )
129
+
130
+ elif page == "Sentiment Analysis":
131
+ st.header('Sentiment Analysis')
132
+ st.markdown("![Alt Text](https://media.giphy.com/media/XIqCQx02E1U9W/giphy.gif)")
133
+ st.write(
134
+ """
135
+
136
+
137
+ """
138
+ )
139
+
140
+ text = st.text_area("Paste text here", value=example_text)
141
+
142
+ if st.button('🔥 Run!'):
143
+ with st.spinner("Loading..."):
144
+ preds, html = sentiment_analyzer.run(text)
145
+ st.success('All done!')
146
+ st.write("")
147
+ st.subheader("Sentiment Predictions")
148
+ st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
149
+ st.write("")
150
+ st.subheader("Sentiment Justification")
151
+ raw_html = html._repr_html_()
152
+ st.components.v1.html(raw_html, height=500)
153
+
154
+ elif page == "Keyword Extraction":
155
+ st.header('Keyword Extraction')
156
+ st.markdown("![Alt Text](https://media.giphy.com/media/xT9C25UNTwfZuk85WP/giphy-downsized-large.gif)")
157
+ st.write(
158
+ """
159
+
160
+
161
+ """
162
+ )
163
+
164
+ text = st.text_area("Paste text here", value=example_text)
165
+
166
+ max_keywords = st.slider('# of Keywords Max Limit', min_value=1, max_value=10, value=5, step=1)
167
+
168
+ if st.button('🔥 Run!'):
169
+ with st.spinner("Loading..."):
170
+ annotation, keywords = keyword_extractor.generate(text, max_keywords)
171
+ st.success('All done!')
172
+
173
+ if annotation:
174
+ st.subheader("Keyword Annotation")
175
+ st.write("")
176
+ annotated_text(*annotation)
177
+ st.text("")
178
+
179
+ st.subheader("Extracted Keywords")
180
+ st.write("")
181
+ df = pd.DataFrame(keywords, columns=['Extracted Keywords'])
182
+ csv = df.to_csv(index=False).encode('utf-8')
183
+ st.download_button('Download Keywords to CSV', csv, file_name='news_intelligence_keywords.csv')
184
+
185
+ data_table = st.table(df)
186
+
187
+ elif page == "Part of Speech Tagging":
188
+ st.header('Part of Speech Tagging')
189
+ st.markdown("![Alt Text](https://media.giphy.com/media/WoWm8YzFQJg5i/giphy.gif)")
190
+ st.write(
191
+ """
192
+
193
+
194
+ """
195
+ )
196
+
197
+ text = st.text_area("Paste text here", value=example_text)
198
+
199
+ if st.button('🔥 Run!'):
200
+ with st.spinner("Loading..."):
201
+ preds = pos_tagger.classify(text)
202
+ st.success('All done!')
203
+ st.write("")
204
+ st.subheader("Part of Speech tags")
205
+ annotated_text(*preds)
206
+ st.write("")
207
+ st.components.v1.iframe('https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html', height=1000)
208
+
209
+ elif page == "Emotion Detection":
210
+ st.header('Emotion Detection')
211
+ st.markdown("![Alt Text](https://media.giphy.com/media/fU8X6ozSszyEw/giphy.gif)")
212
+ st.write(
213
+ """
214
+
215
+
216
+ """
217
+ )
218
+
219
+ text = st.text_area("Paste text here", value=example_text)
220
+
221
+ if st.button('🔥 Run!'):
222
+ with st.spinner("Loading..."):
223
+ preds, html = emotion_detector.run(text)
224
+ st.success('All done!')
225
+ st.write("")
226
+ st.subheader("Emotion Predictions")
227
+ st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
228
+ raw_html = html._repr_html_()
229
+ st.write("")
230
+ st.subheader("Emotion Justification")
231
+ st.components.v1.html(raw_html, height=500)
232
+
233
+ elif page == "Named Entity Recognition":
234
+ st.header('Named Entity Recognition')
235
+ st.markdown("![Alt Text](https://media.giphy.com/media/lxO8wdWdu4tig/giphy.gif)")
236
+ st.write(
237
+ """
238
+
239
+
240
+ """
241
+ )
242
+
243
+ text = st.text_area("Paste text here", value=example_text)
244
+
245
+ if st.button('🔥 Run!'):
246
+ with st.spinner("Loading..."):
247
+ preds, ner_annotation = ner.classify(text)
248
+ st.success('All done!')
249
+ st.write("")
250
+ st.subheader("NER Predictions")
251
+ annotated_text(*ner_annotation)
252
+ st.write("")
253
+ st.subheader("NER Prediction Metadata")
254
+ st.write(preds)
emotion_detection.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
+ from transformers_interpret import SequenceClassificationExplainer
3
+ import torch
4
+ import pandas as pd
5
+
6
+
7
+ class EmotionDetection:
8
+ """
9
+ Emotion Detection on text data.
10
+
11
+ Attributes:
12
+ tokenizer: An instance of Hugging Face Tokenizer
13
+ model: An instance of Hugging Face Model
14
+ explainer: An instance of SequenceClassificationExplainer from Transformers interpret
15
+ """
16
+
17
+ def __init__(self):
18
+ hub_location = 'cardiffnlp/twitter-roberta-base-emotion'
19
+ self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
20
+ self.model = AutoModelForSequenceClassification.from_pretrained(hub_location)
21
+ self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
22
+
23
+ def justify(self, text):
24
+ """
25
+ Get html annotation for displaying emotion justification over text.
26
+
27
+ Parameters:
28
+ text (str): The user input string to emotion justification
29
+
30
+ Returns:
31
+ html (hmtl): html object for plotting emotion prediction justification
32
+ """
33
+
34
+ word_attributions = self.explainer(text)
35
+ html = self.explainer.visualize("example.html")
36
+
37
+ return html
38
+
39
+ def classify(self, text):
40
+ """
41
+ Recognize Emotion in text.
42
+
43
+ Parameters:
44
+ text (str): The user input string to perform emotion classification on
45
+
46
+ Returns:
47
+ predictions (str): The predicted probabilities for emotion classes
48
+ """
49
+
50
+ tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
51
+ outputs = self.model(**tokens)
52
+ probs = torch.nn.functional.softmax(outputs[0], dim=-1)
53
+ probs = probs.mean(dim=0).detach().numpy()
54
+ labels = list(self.model.config.id2label.values())
55
+ preds = pd.Series(probs, index=labels, name='Predicted Probability')
56
+
57
+ return preds
58
+
59
+ def run(self, text):
60
+ """
61
+ Classify and Justify Emotion in text.
62
+
63
+ Parameters:
64
+ text (str): The user input string to perform emotion classification on
65
+
66
+ Returns:
67
+ predictions (str): The predicted probabilities for emotion classes
68
+ html (hmtl): html object for plotting emotion prediction justification
69
+ """
70
+
71
+ preds = self.classify(text)
72
+ html = self.justify(text)
73
+
74
+ return preds, html
keyword_extraction.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nltk
2
+ import pytextrank
3
+ import re
4
+ from operator import itemgetter
5
+ import en_core_web_sm
6
+
7
+
8
+ class KeywordExtractor:
9
+ """
10
+ Keyword Extraction on text data
11
+
12
+ Attributes:
13
+ nlp: An instance English pipeline optimized for CPU for spacy
14
+ """
15
+
16
+ def __init__(self):
17
+ self.nlp = en_core_web_sm.load()
18
+ self.nlp.add_pipe("textrank")
19
+
20
+ def get_keywords(self, text, max_keywords):
21
+ """
22
+ Extract keywords from text.
23
+
24
+ Parameters:
25
+ text (str): The user input string to extract keywords from
26
+
27
+ Returns:
28
+ kws (list): list of extracted keywords
29
+ """
30
+
31
+ doc = self.nlp(text)
32
+
33
+ kws = [i.text for i in doc._.phrases[:max_keywords]]
34
+
35
+ return kws
36
+
37
+ def get_keyword_indices(self, kws, text):
38
+ """
39
+ Extract keywords from text.
40
+
41
+ Parameters:
42
+ kws (list): list of extracted keywords
43
+ text (str): The user input string to extract keywords from
44
+
45
+ Returns:
46
+ keyword_indices (list): list of indices for keyword boundaries in text
47
+ """
48
+
49
+ keyword_indices = []
50
+ for s in kws:
51
+ indices = [[m.start(), m.end()] for m in re.finditer(re.escape(s), text)]
52
+ keyword_indices.extend(indices)
53
+
54
+ return keyword_indices
55
+
56
+ def merge_overlapping_indices(self, keyword_indices):
57
+ """
58
+ Merge overlapping keyword indices.
59
+
60
+ Parameters:
61
+ keyword_indices (list): list of indices for keyword boundaries in text
62
+
63
+ Returns:
64
+ keyword_indices (list): list of indices for keyword boundaries in with overlapping combined
65
+ """
66
+
67
+ # Sort the array on the basis of start values of intervals.
68
+ keyword_indices.sort()
69
+
70
+ stack = []
71
+ # insert first interval into stack
72
+ stack.append(keyword_indices[0])
73
+ for i in keyword_indices[1:]:
74
+ # Check for overlapping interval,
75
+ # if interval overlap
76
+ if (stack[-1][0] <= i[0] <= stack[-1][-1]) or (stack[-1][-1] == i[0]-1):
77
+ stack[-1][-1] = max(stack[-1][-1], i[-1])
78
+ else:
79
+ stack.append(i)
80
+ return stack
81
+
82
+ def merge_until_finished(self, keyword_indices):
83
+ """
84
+ Loop until no overlapping keyword indices left.
85
+
86
+ Parameters:
87
+ keyword_indices (list): list of indices for keyword boundaries in text
88
+
89
+ Returns:
90
+ keyword_indices (list): list of indices for keyword boundaries in with overlapping combined
91
+ """
92
+
93
+ len_indices = 0
94
+ while True:
95
+ # Merge overlapping indices
96
+ merged = self.merge_overlapping_indices(keyword_indices)
97
+ # Check to see if merging reduced number of annotation indices
98
+ # If merging did not reduce list return final indicies
99
+ if len_indices == len(merged):
100
+ out_indices = sorted(merged, key=itemgetter(0))
101
+ return out_indices
102
+ else:
103
+ len_indices = len(merged)
104
+
105
+ def get_annotation(self, text, keyword_indices):
106
+ """
107
+ Create text annotation for extracted keywords.
108
+
109
+ Parameters:
110
+ keyword_indices (list): list of indices for keyword boundaries in text
111
+
112
+ Returns:
113
+ annotation (list): list of tuples for generating html
114
+ """
115
+
116
+ # Turn list to numpy array
117
+ arr = list(text)
118
+
119
+ # Loop through indices in list and insert delimeters
120
+ for idx in sorted(keyword_indices, reverse=True):
121
+ arr.insert(idx[0], "<kw>")
122
+ arr.insert(idx[1]+1, "<!kw> <kw>")
123
+
124
+ # join array
125
+ joined_annotation = ''.join(arr)
126
+
127
+ # split array on delimeter
128
+ split = joined_annotation.split('<kw>')
129
+
130
+ # Create annotation for keywords in text
131
+ annotation = [(x.replace('<!kw> ', ''), "KEY", "#26aaef") if "<!kw>" in x else x for x in split]
132
+
133
+ return annotation
134
+
135
+ def generate(self, text, max_keywords):
136
+ """
137
+ Create text annotation for extracted keywords.
138
+
139
+ Parameters:
140
+ text (str): The user input string to extract keywords from
141
+ max_keywords (int): Limit on number of keywords to generate
142
+
143
+ Returns:
144
+ annotation (list): list of tuples for generating html
145
+ kws (list): list of extracted keywords
146
+ """
147
+
148
+ kws = self.get_keywords(text, max_keywords)
149
+
150
+ indices = list(self.get_keyword_indices(kws, text))
151
+ if indices:
152
+ indices_merged = self.merge_until_finished(indices)
153
+ annotation = self.get_annotation(text, indices_merged)
154
+ else:
155
+ annotation = None
156
+
157
+ return annotation, kws
158
+
named_entity_recognition.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
2
+ from transformers import pipeline
3
+
4
+
5
+ class NamedEntityRecognition:
6
+ """
7
+ Named Entity Recognition on text data.
8
+
9
+ Attributes:
10
+ tokenizer: An instance of Hugging Face Tokenizer
11
+ model: An instance of Hugging Face Model
12
+ nlp: An instance of Hugging Face Named Entity Recognition pipeline
13
+ """
14
+
15
+ def __init__(self):
16
+ tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
17
+ model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
18
+ self.nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
19
+
20
+ def get_annotation(self, preds, text):
21
+ """
22
+ Get html annotation for displaying entities over text.
23
+
24
+ Parameters:
25
+ preds (dict): List of entities and their associated metadata
26
+ text (str): The user input string to generate entity tags for
27
+
28
+ Returns:
29
+ final_annotation (list): List of tuples to pass to text annotation html creator
30
+ """
31
+
32
+ splits = [0]
33
+ entities = {}
34
+ for i in preds:
35
+ splits.append(i['start'])
36
+ splits.append(i['end'])
37
+ entities[i['word']] = i['entity_group']
38
+
39
+ # Exclude bad preds
40
+ exclude = ['', '.', '. ', ' ']
41
+ for x in exclude:
42
+ if x in entities.keys():
43
+ entities.pop(x)
44
+
45
+ parts = [text[i:j] for i, j in zip(splits, splits[1:] + [None])]
46
+
47
+ final_annotation = [(x, entities[x], "") if x in entities.keys() else x for x in parts]
48
+
49
+ return final_annotation
50
+
51
+ def classify(self, text):
52
+ """
53
+ Recognize Named Entities in text.
54
+
55
+ Parameters:
56
+ text (str): The user input string to generate entity tags for
57
+
58
+ Returns:
59
+ predictions (str): The user input string to generate entity tags for
60
+ ner_annotation (str): The user input string to generate entity tags for
61
+ """
62
+
63
+ preds = self.nlp(text)
64
+ ner_annotation = self.get_annotation(preds, text)
65
+ return preds, ner_annotation
part_of_speech_tagging.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nltk
2
+ from nltk.tokenize import word_tokenize
3
+ nltk.download('punkt')
4
+ nltk.download('averaged_perceptron_tagger')
5
+
6
+
7
+ class POSTagging:
8
+ """Part of Speech Tagging on text data"""
9
+
10
+ def __init__(self):
11
+ pass
12
+
13
+ def classify(self, text):
14
+ """
15
+ Generate Part of Speech tags.
16
+
17
+ Parameters:
18
+ text (str): The user input string to generate tags for
19
+
20
+ Returns:
21
+ predictions (list): list of tuples containing words and their respective tags
22
+ """
23
+
24
+ text = word_tokenize(text)
25
+ predictions = nltk.pos_tag(text)
26
+ return predictions
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ scikit-learn
2
+ tensorflow==2.5.0
3
+ tensorflow-hub==0.12.0
4
+ nltk==3.5
5
+ typing-extensions==3.7.4.3
6
+ streamlit-option-menu==0.3.2
7
+ st-annotated-text==3.0.0
8
+ transformers-interpret==0.7.2
9
+ htbuilder==0.6.0
10
+ pytextrank==3.2.3
11
+ spacy==3.8.3
12
+ en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl
sentiment_analysis.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
+ from transformers_interpret import SequenceClassificationExplainer
3
+ import torch
4
+ import pandas as pd
5
+
6
+
7
+ class SentimentAnalysis:
8
+ """
9
+ Sentiment on text data.
10
+
11
+ Attributes:
12
+ tokenizer: An instance of Hugging Face Tokenizer
13
+ model: An instance of Hugging Face Model
14
+ explainer: An instance of SequenceClassificationExplainer from Transformers interpret
15
+ """
16
+
17
+ def __init__(self):
18
+ # Load Tokenizer & Model
19
+ hub_location = 'cardiffnlp/twitter-roberta-base-sentiment'
20
+ self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
21
+ self.model = AutoModelForSequenceClassification.from_pretrained(hub_location)
22
+
23
+ # Change model labels in config
24
+ self.model.config.id2label[0] = "Negative"
25
+ self.model.config.id2label[1] = "Neutral"
26
+ self.model.config.id2label[2] = "Positive"
27
+ self.model.config.label2id["Negative"] = self.model.config.label2id.pop("LABEL_0")
28
+ self.model.config.label2id["Neutral"] = self.model.config.label2id.pop("LABEL_1")
29
+ self.model.config.label2id["Positive"] = self.model.config.label2id.pop("LABEL_2")
30
+
31
+ # Instantiate explainer
32
+ self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
33
+
34
+ def justify(self, text):
35
+ """
36
+ Get html annotation for displaying sentiment justification over text.
37
+
38
+ Parameters:
39
+ text (str): The user input string to sentiment justification
40
+
41
+ Returns:
42
+ html (hmtl): html object for plotting sentiment prediction justification
43
+ """
44
+
45
+ word_attributions = self.explainer(text)
46
+ html = self.explainer.visualize("example.html")
47
+
48
+ return html
49
+
50
+ def classify(self, text):
51
+ """
52
+ Recognize Sentiment in text.
53
+
54
+ Parameters:
55
+ text (str): The user input string to perform sentiment classification on
56
+
57
+ Returns:
58
+ predictions (str): The predicted probabilities for sentiment classes
59
+ """
60
+
61
+ tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
62
+ outputs = self.model(**tokens)
63
+ probs = torch.nn.functional.softmax(outputs[0], dim=-1)
64
+ probs = probs.mean(dim=0).detach().numpy()
65
+ predictions = pd.Series(probs, index=["Negative", "Neutral", "Positive"], name='Predicted Probability')
66
+
67
+ return predictions
68
+
69
+ def run(self, text):
70
+ """
71
+ Classify and Justify Sentiment in text.
72
+
73
+ Parameters:
74
+ text (str): The user input string to perform sentiment classification on
75
+
76
+ Returns:
77
+ predictions (str): The predicted probabilities for sentiment classes
78
+ html (hmtl): html object for plotting sentiment prediction justification
79
+ """
80
+
81
+ predictions = self.classify(text)
82
+ html = self.justify(text)
83
+
84
+ return predictions, html