Hammad712's picture
Update main.py
3dceebc verified
raw
history blame
12 kB
from fastapi import FastAPI, HTTPException, UploadFile, File
from pydantic import BaseModel
import torch
import librosa
import numpy as np
import os
from transformers import AutoProcessor, AutoModelForCTC
import tempfile
import shutil
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
import warnings
# Ignore deprecation warnings
warnings.filterwarnings("ignore")
# Load environment variables
HF_TOKEN = os.getenv("HF_TOKEN")
app = FastAPI(title="Quran Recitation Comparer API")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ComparisonResult(BaseModel):
similarity_score: float
interpretation: str
# Custom implementation of DTW
def custom_dtw(X, Y, metric='euclidean'):
"""
Custom Dynamic Time Warping implementation.
Args:
X: First sequence
Y: Second sequence
metric: Distance metric ('euclidean' or 'cosine')
Returns:
D: Cost matrix
wp: Warping path
"""
n, m = len(X), len(Y)
D = np.zeros((n + 1, m + 1))
D[0, 1:] = np.inf
D[1:, 0] = np.inf
D[0, 0] = 0
for i in range(1, n + 1):
for j in range(1, m + 1):
if metric == 'euclidean':
cost = np.sum((X[i-1] - Y[j-1])**2)
elif metric == 'cosine':
cost = 1 - np.dot(X[i-1], Y[j-1]) / (np.linalg.norm(X[i-1]) * np.linalg.norm(Y[j-1]))
D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
wp = [(n, m)]
i, j = n, m
while i > 0 or j > 0:
if i == 0:
j -= 1
elif j == 0:
i -= 1
else:
min_idx = np.argmin([D[i-1, j-1], D[i-1, j], D[i, j-1]])
if min_idx == 0:
i -= 1
j -= 1
elif min_idx == 1:
i -= 1
else:
j -= 1
wp.append((i, j))
wp.reverse()
return D, wp
class QuranRecitationComparer:
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None):
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
try:
if token:
print(f"Loading model {model_name} with token...")
# Use 'use_auth_token' instead of the deprecated 'token' parameter
self.processor = AutoProcessor.from_pretrained(model_name, use_auth_token=token)
self.model = AutoModelForCTC.from_pretrained(model_name, use_auth_token=token)
else:
print(f"Loading model {model_name} without token...")
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = AutoModelForCTC.from_pretrained(model_name)
self.model = self.model.to(self.device)
self.model.eval()
# Ensure that hidden states are returned by default
self.model.config.output_hidden_states = True
print("Model loaded successfully!")
except Exception as e:
print(f"Error loading model: {str(e)}")
raise
# Cache for embeddings to avoid recomputation
self.embedding_cache = {}
def load_audio(self, file_path, target_sr=16000, normalize=True):
"""Load and preprocess an audio file."""
if not os.path.exists(file_path):
raise FileNotFoundError(f"Audio file not found: {file_path}")
print(f"Loading audio: {file_path}")
y, sr = librosa.load(file_path, sr=target_sr)
if normalize:
y = librosa.util.normalize(y)
# Trim silence using a simplified approach
trim_y = []
threshold = 0.02 # Threshold for silence detection
for i in range(len(y)):
if abs(y[i]) > threshold:
trim_y.append(y[i])
if len(trim_y) > 0:
y = np.array(trim_y)
return y
def get_deep_embedding(self, audio, sr=16000):
"""Extract frame-wise deep embeddings using the pretrained model."""
try:
inputs = self.processor(
audio,
sampling_rate=sr,
return_tensors="pt"
).input_values.to(self.device)
with torch.no_grad():
# Call the model without explicitly passing output_hidden_states
outputs = self.model(inputs)
hidden_states = outputs.hidden_states[-1]
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
return embedding_seq
except Exception as e:
print(f"Error in get_deep_embedding: {str(e)}")
raise
def compute_dtw_distance(self, features1, features2):
"""Compute the DTW distance between two sequences of features."""
if features1.ndim == 1:
features1 = features1.reshape(-1, 1)
if features2.ndim == 1:
features2 = features2.reshape(-1, 1)
print(f"Feature shapes: {features1.shape}, {features2.shape}")
max_length = 300
if features1.shape[0] > max_length or features2.shape[0] > max_length:
step1 = max(1, features1.shape[0] // max_length)
step2 = max(1, features2.shape[0] // max_length)
features1 = features1[::step1]
features2 = features2[::step2]
print(f"Subsampled feature shapes: {features1.shape}, {features2.shape}")
try:
D, wp = custom_dtw(X=features1, Y=features2, metric='euclidean')
distance = D[-1, -1]
normalized_distance = distance / len(wp)
return normalized_distance
except Exception as e:
print(f"Error in compute_dtw_distance: {str(e)}")
mean_1 = np.mean(features1, axis=0)
mean_2 = np.mean(features2, axis=0)
euclidean_distance = np.sqrt(np.sum((mean_1 - mean_2) ** 2))
return euclidean_distance
def interpret_similarity(self, norm_distance):
"""Interpret the normalized distance value."""
if norm_distance == 0:
result = "The recitations are identical based on the deep embeddings."
score = 100
elif norm_distance < 1:
result = "The recitations are extremely similar."
score = 95
elif norm_distance < 5:
result = "The recitations are very similar with minor differences."
score = 80
elif norm_distance < 10:
result = "The recitations show moderate similarity."
score = 60
elif norm_distance < 20:
result = "The recitations show some noticeable differences."
score = 40
else:
result = "The recitations are quite different."
score = max(0, 100 - norm_distance)
return result, score
def get_embedding_for_file(self, file_path):
"""Get embedding for a file, using cache if available."""
if file_path in self.embedding_cache:
print(f"Using cached embedding for {file_path}")
return self.embedding_cache[file_path]
print(f"Computing new embedding for {file_path}")
try:
audio = self.load_audio(file_path)
embedding = self.get_deep_embedding(audio)
self.embedding_cache[file_path] = embedding
print(f"Embedding shape: {embedding.shape}")
return embedding
except Exception as e:
print(f"Error getting embedding: {str(e)}")
raise
def predict(self, file_path1, file_path2):
"""
Predict the similarity between two audio files.
Args:
file_path1 (str): Path to first audio file
file_path2 (str): Path to second audio file
Returns:
float: Similarity score
str: Interpretation of similarity
"""
print(f"Comparing {file_path1} and {file_path2}")
try:
embedding1 = self.get_embedding_for_file(file_path1)
embedding2 = self.get_embedding_for_file(file_path2)
print("Computing DTW distance...")
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
print(f"Normalized distance: {norm_distance}")
interpretation, similarity_score = self.interpret_similarity(norm_distance)
print(f"Similarity score: {similarity_score}, Interpretation: {interpretation}")
return similarity_score, interpretation
except Exception as e:
print(f"Error in predict: {str(e)}")
return 0, f"Error comparing files: {str(e)}"
def clear_cache(self):
"""Clear the embedding cache to free memory."""
self.embedding_cache = {}
print("Embedding cache cleared")
# Global variable for the comparer instance
comparer = None
@app.on_event("startup")
async def startup_event():
"""Initialize the model when the application starts."""
global comparer
print("Initializing model... This may take a moment.")
try:
comparer = QuranRecitationComparer(
model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
token=HF_TOKEN
)
print("Model initialized and ready for predictions!")
except Exception as e:
print(f"Error initializing model: {str(e)}")
@app.get("/")
async def root():
"""Root endpoint to check if the API is running."""
status = "active" if comparer else "model not loaded"
return {"message": "Quran Recitation Comparer API is running", "status": status}
@app.post("/compare", response_model=ComparisonResult)
async def compare_files(
file1: UploadFile = File(...),
file2: UploadFile = File(...)
):
"""
Compare two audio files and return similarity metrics.
- **file1**: First audio file (MP3, WAV, etc.)
- **file2**: Second audio file (MP3, WAV, etc.)
Returns similarity score and interpretation.
"""
if not comparer:
raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.")
print(f"Received files: {file1.filename} and {file2.filename}")
temp_dir = tempfile.mkdtemp()
print(f"Created temporary directory: {temp_dir}")
try:
temp_file1 = os.path.join(temp_dir, file1.filename)
temp_file2 = os.path.join(temp_dir, file2.filename)
with open(temp_file1, "wb") as f:
content = await file1.read()
f.write(content)
with open(temp_file2, "wb") as f:
content = await file2.read()
f.write(content)
print(f"Files saved to: {temp_file1} and {temp_file2}")
similarity_score, interpretation = comparer.predict(temp_file1, temp_file2)
return ComparisonResult(
similarity_score=similarity_score,
interpretation=interpretation
)
except Exception as e:
print(f"Error processing files: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}")
finally:
print(f"Cleaning up temporary directory: {temp_dir}")
shutil.rmtree(temp_dir, ignore_errors=True)
@app.post("/clear-cache")
async def clear_cache():
"""Clear the embedding cache to free memory."""
if not comparer:
raise HTTPException(status_code=500, detail="Model not initialized.")
comparer.clear_cache()
return {"message": "Embedding cache cleared successfully"}
if __name__ == "__main__":
uvicorn.run("main:app", host="0.0.0.0", port=7860, log_level="info")