from fastapi import FastAPI, HTTPException, UploadFile, File from pydantic import BaseModel import torch import librosa import numpy as np import os from transformers import AutoProcessor, AutoModelForCTC import tempfile import shutil import uvicorn from fastapi.middleware.cors import CORSMiddleware import warnings # Ignore deprecation warnings warnings.filterwarnings("ignore") # Load environment variables HF_TOKEN = os.getenv("HF_TOKEN") app = FastAPI(title="Quran Recitation Comparer API") # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class ComparisonResult(BaseModel): similarity_score: float interpretation: str # Custom implementation of DTW def custom_dtw(X, Y, metric='euclidean'): """ Custom Dynamic Time Warping implementation. Args: X: First sequence Y: Second sequence metric: Distance metric ('euclidean' or 'cosine') Returns: D: Cost matrix wp: Warping path """ n, m = len(X), len(Y) D = np.zeros((n + 1, m + 1)) D[0, 1:] = np.inf D[1:, 0] = np.inf D[0, 0] = 0 for i in range(1, n + 1): for j in range(1, m + 1): if metric == 'euclidean': cost = np.sum((X[i-1] - Y[j-1])**2) elif metric == 'cosine': cost = 1 - np.dot(X[i-1], Y[j-1]) / (np.linalg.norm(X[i-1]) * np.linalg.norm(Y[j-1])) D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1]) wp = [(n, m)] i, j = n, m while i > 0 or j > 0: if i == 0: j -= 1 elif j == 0: i -= 1 else: min_idx = np.argmin([D[i-1, j-1], D[i-1, j], D[i, j-1]]) if min_idx == 0: i -= 1 j -= 1 elif min_idx == 1: i -= 1 else: j -= 1 wp.append((i, j)) wp.reverse() return D, wp class QuranRecitationComparer: def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None): """Initialize the Quran recitation comparer with a specific Wav2Vec2 model.""" self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {self.device}") try: if token: print(f"Loading model {model_name} with token...") # Use 'use_auth_token' instead of the deprecated 'token' parameter self.processor = AutoProcessor.from_pretrained(model_name, use_auth_token=token) self.model = AutoModelForCTC.from_pretrained(model_name, use_auth_token=token) else: print(f"Loading model {model_name} without token...") self.processor = AutoProcessor.from_pretrained(model_name) self.model = AutoModelForCTC.from_pretrained(model_name) self.model = self.model.to(self.device) self.model.eval() # Ensure that hidden states are returned by default self.model.config.output_hidden_states = True print("Model loaded successfully!") except Exception as e: print(f"Error loading model: {str(e)}") raise # Cache for embeddings to avoid recomputation self.embedding_cache = {} def load_audio(self, file_path, target_sr=16000, normalize=True): """Load and preprocess an audio file.""" if not os.path.exists(file_path): raise FileNotFoundError(f"Audio file not found: {file_path}") print(f"Loading audio: {file_path}") y, sr = librosa.load(file_path, sr=target_sr) if normalize: y = librosa.util.normalize(y) # Trim silence using a simplified approach trim_y = [] threshold = 0.02 # Threshold for silence detection for i in range(len(y)): if abs(y[i]) > threshold: trim_y.append(y[i]) if len(trim_y) > 0: y = np.array(trim_y) return y def get_deep_embedding(self, audio, sr=16000): """Extract frame-wise deep embeddings using the pretrained model.""" try: inputs = self.processor( audio, sampling_rate=sr, return_tensors="pt" ).input_values.to(self.device) with torch.no_grad(): # Call the model without explicitly passing output_hidden_states outputs = self.model(inputs) hidden_states = outputs.hidden_states[-1] embedding_seq = hidden_states.squeeze(0).cpu().numpy() return embedding_seq except Exception as e: print(f"Error in get_deep_embedding: {str(e)}") raise def compute_dtw_distance(self, features1, features2): """Compute the DTW distance between two sequences of features.""" if features1.ndim == 1: features1 = features1.reshape(-1, 1) if features2.ndim == 1: features2 = features2.reshape(-1, 1) print(f"Feature shapes: {features1.shape}, {features2.shape}") max_length = 300 if features1.shape[0] > max_length or features2.shape[0] > max_length: step1 = max(1, features1.shape[0] // max_length) step2 = max(1, features2.shape[0] // max_length) features1 = features1[::step1] features2 = features2[::step2] print(f"Subsampled feature shapes: {features1.shape}, {features2.shape}") try: D, wp = custom_dtw(X=features1, Y=features2, metric='euclidean') distance = D[-1, -1] normalized_distance = distance / len(wp) return normalized_distance except Exception as e: print(f"Error in compute_dtw_distance: {str(e)}") mean_1 = np.mean(features1, axis=0) mean_2 = np.mean(features2, axis=0) euclidean_distance = np.sqrt(np.sum((mean_1 - mean_2) ** 2)) return euclidean_distance def interpret_similarity(self, norm_distance): """Interpret the normalized distance value.""" if norm_distance == 0: result = "The recitations are identical based on the deep embeddings." score = 100 elif norm_distance < 1: result = "The recitations are extremely similar." score = 95 elif norm_distance < 5: result = "The recitations are very similar with minor differences." score = 80 elif norm_distance < 10: result = "The recitations show moderate similarity." score = 60 elif norm_distance < 20: result = "The recitations show some noticeable differences." score = 40 else: result = "The recitations are quite different." score = max(0, 100 - norm_distance) return result, score def get_embedding_for_file(self, file_path): """Get embedding for a file, using cache if available.""" if file_path in self.embedding_cache: print(f"Using cached embedding for {file_path}") return self.embedding_cache[file_path] print(f"Computing new embedding for {file_path}") try: audio = self.load_audio(file_path) embedding = self.get_deep_embedding(audio) self.embedding_cache[file_path] = embedding print(f"Embedding shape: {embedding.shape}") return embedding except Exception as e: print(f"Error getting embedding: {str(e)}") raise def predict(self, file_path1, file_path2): """ Predict the similarity between two audio files. Args: file_path1 (str): Path to first audio file file_path2 (str): Path to second audio file Returns: float: Similarity score str: Interpretation of similarity """ print(f"Comparing {file_path1} and {file_path2}") try: embedding1 = self.get_embedding_for_file(file_path1) embedding2 = self.get_embedding_for_file(file_path2) print("Computing DTW distance...") norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T) print(f"Normalized distance: {norm_distance}") interpretation, similarity_score = self.interpret_similarity(norm_distance) print(f"Similarity score: {similarity_score}, Interpretation: {interpretation}") return similarity_score, interpretation except Exception as e: print(f"Error in predict: {str(e)}") return 0, f"Error comparing files: {str(e)}" def clear_cache(self): """Clear the embedding cache to free memory.""" self.embedding_cache = {} print("Embedding cache cleared") # Global variable for the comparer instance comparer = None @app.on_event("startup") async def startup_event(): """Initialize the model when the application starts.""" global comparer print("Initializing model... This may take a moment.") try: comparer = QuranRecitationComparer( model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=HF_TOKEN ) print("Model initialized and ready for predictions!") except Exception as e: print(f"Error initializing model: {str(e)}") @app.get("/") async def root(): """Root endpoint to check if the API is running.""" status = "active" if comparer else "model not loaded" return {"message": "Quran Recitation Comparer API is running", "status": status} @app.post("/compare", response_model=ComparisonResult) async def compare_files( file1: UploadFile = File(...), file2: UploadFile = File(...) ): """ Compare two audio files and return similarity metrics. - **file1**: First audio file (MP3, WAV, etc.) - **file2**: Second audio file (MP3, WAV, etc.) Returns similarity score and interpretation. """ if not comparer: raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.") print(f"Received files: {file1.filename} and {file2.filename}") temp_dir = tempfile.mkdtemp() print(f"Created temporary directory: {temp_dir}") try: temp_file1 = os.path.join(temp_dir, file1.filename) temp_file2 = os.path.join(temp_dir, file2.filename) with open(temp_file1, "wb") as f: content = await file1.read() f.write(content) with open(temp_file2, "wb") as f: content = await file2.read() f.write(content) print(f"Files saved to: {temp_file1} and {temp_file2}") similarity_score, interpretation = comparer.predict(temp_file1, temp_file2) return ComparisonResult( similarity_score=similarity_score, interpretation=interpretation ) except Exception as e: print(f"Error processing files: {str(e)}") raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}") finally: print(f"Cleaning up temporary directory: {temp_dir}") shutil.rmtree(temp_dir, ignore_errors=True) @app.post("/clear-cache") async def clear_cache(): """Clear the embedding cache to free memory.""" if not comparer: raise HTTPException(status_code=500, detail="Model not initialized.") comparer.clear_cache() return {"message": "Embedding cache cleared successfully"} if __name__ == "__main__": uvicorn.run("main:app", host="0.0.0.0", port=7860, log_level="info")