speecht5-darija / app.py
HAMMALE's picture
Upload all space files
c56a4e0 verified
raw
history blame
7.2 kB
import torch
import soundfile as sf
import os
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier
# Define paths and device
model_path = "HAMMALE/speecht5-darija" # Path to your model on HF Hub
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load models
processor = SpeechT5Processor.from_pretrained(model_path)
model = SpeechT5ForTextToSpeech.from_pretrained(model_path).to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# Load speaker embedding model
speaker_model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-xvect-voxceleb",
run_opts={"device": device},
savedir=os.path.join("/tmp", "spkrec-xvect-voxceleb"),
)
# Load pre-computed speaker embeddings
male_embedding = torch.load("male_embedding.pt") if os.path.exists("male_embedding.pt") else torch.randn(1, 512)
female_embedding = torch.load("female_embedding.pt") if os.path.exists("female_embedding.pt") else torch.randn(1, 512)
# Text normalization function
def normalize_text(text):
"""Normalize text for TTS processing"""
text = text.lower()
# Keep letters, numbers, spaces and apostrophes - fixed regex
text = re.sub(r'[^\w\s\'\u0600-\u06FF]', '', text)
text = ' '.join(text.split())
return text
# Function to synthesize speech
def synthesize_speech(text, voice_type="male", speed=1.0):
"""Generate speech from text using the specified voice type"""
try:
# Select speaker embedding based on voice type
if voice_type == "male":
speaker_embeddings = male_embedding.to(device)
else:
speaker_embeddings = female_embedding.to(device)
# Normalize and tokenize input text
normalized_text = normalize_text(text)
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
# Generate speech
with torch.no_grad():
speech = model.generate_speech(
inputs["input_ids"],
speaker_embeddings,
vocoder=vocoder
)
# Convert to numpy array and adjust speed if needed
speech_np = speech.cpu().numpy()
# Apply speed adjustment (simple resampling)
if speed != 1.0:
# This is a simple approach - for production use a proper resampling library
import numpy as np
from scipy import signal
sample_rate = 16000
new_length = int(len(speech_np) / speed)
speech_np = signal.resample(speech_np, new_length)
# Save temporary audio file
output_file = "output_speech.wav"
sf.write(output_file, speech_np, 16000)
return output_file, None
except Exception as e:
return None, f"Error generating speech: {str(e)}"
# Gradio imports need to be added
import gradio as gr
# Custom CSS for better design
custom_css = """
.gradio-container {
font-family: 'Poppins', 'Arial', sans-serif;
max-width: 750px;
margin: auto;
}
.main-header {
background: linear-gradient(90deg, #c31432, #240b36);
color: white;
padding: 1.5em;
border-radius: 10px;
text-align: center;
margin-bottom: 1em;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-header h1 {
font-size: 2.2em;
margin-bottom: 0.3em;
}
.main-header p {
font-size: 1.1em;
opacity: 0.9;
}
footer {
text-align: center;
margin-top: 2em;
color: #555;
font-size: 0.9em;
}
.flag-icon {
width: 24px;
height: 24px;
vertical-align: middle;
margin-right: 8px;
}
.example-header {
font-weight: bold;
color: #c31432;
margin-top: 1em;
}
.info-box {
background-color: #f9f9f9;
border-left: 4px solid #c31432;
padding: 1em;
margin: 1em 0;
border-radius: 5px;
}
.voice-selector {
display: flex;
justify-content: center;
gap: 20px;
margin: 10px 0;
}
.voice-option {
border: 2px solid #ddd;
border-radius: 10px;
padding: 10px 15px;
transition: all 0.3s ease;
cursor: pointer;
}
.voice-option.selected {
border-color: #c31432;
background-color: #fff5f5;
}
.slider-container {
margin: 20px 0;
}
"""
# Create Gradio interface with improved design
with gr.Blocks(css=custom_css) as demo:
gr.HTML(
"""
<div class="main-header">
<h1>🇲🇦 Moroccan Darija Text-to-Speech 🎧</h1>
<p>Convert Moroccan Arabic (Darija) text into natural-sounding speech</p>
</div>
"""
)
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div class="info-box">
<p>This model was fine-tuned on the DODa audio dataset to produce high-quality
Darija speech from text input. You can adjust the voice and speed below.</p>
</div>
"""
)
text_input = gr.Textbox(
label="Enter Darija Text",
placeholder="Kteb chi jomla b darija hna...",
lines=3
)
with gr.Row():
voice_type = gr.Radio(
["male", "female"],
label="Voice Type",
value="male"
)
speed = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed"
)
generate_btn = gr.Button("Generate Speech", variant="primary")
gr.HTML(
"""
<div class="example-header">Example phrases:</div>
<ul>
<li>"Ana Nadi Bezzaaf hhh"</li>
<li>"Lyoum ajwaa zwina bezzaf."</li>
<li>"lmaghrib ahssan blad fi l3alam "</li>
</ul>
"""
)
with gr.Column():
audio_output = gr.Audio(label="Generated Speech")
error_output = gr.Textbox(label="Error (if any)", visible=False)
gr.Examples(
examples=[
["Ana Nadi Bezzaaf hhh", "male", 1.0],
["Lyoum ajwaa zwina bezzaf.", "female", 1.0],
["lmaghrib ahssan blad fi l3alam", "male", 1.0],
["Filistine hora mina lbar ila lbahr", "female", 0.8],
],
inputs=[text_input, voice_type, speed],
outputs=[audio_output, error_output],
fn=synthesize_speech
)
gr.HTML(
"""
<footer>
<p>Developed by HAMMALE | Powered by Microsoft SpeechT5 | Data: DODa</p>
</footer>
"""
)
# Set button click action
generate_btn.click(
fn=synthesize_speech,
inputs=[text_input, voice_type, speed],
outputs=[audio_output, error_output]
)
# Launch the demo
if __name__ == "__main__":
demo.launch()