Spaces:
Running
Running
File size: 7,201 Bytes
c56a4e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import torch
import soundfile as sf
import os
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier
# Define paths and device
model_path = "HAMMALE/speecht5-darija" # Path to your model on HF Hub
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load models
processor = SpeechT5Processor.from_pretrained(model_path)
model = SpeechT5ForTextToSpeech.from_pretrained(model_path).to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# Load speaker embedding model
speaker_model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-xvect-voxceleb",
run_opts={"device": device},
savedir=os.path.join("/tmp", "spkrec-xvect-voxceleb"),
)
# Load pre-computed speaker embeddings
male_embedding = torch.load("male_embedding.pt") if os.path.exists("male_embedding.pt") else torch.randn(1, 512)
female_embedding = torch.load("female_embedding.pt") if os.path.exists("female_embedding.pt") else torch.randn(1, 512)
# Text normalization function
def normalize_text(text):
"""Normalize text for TTS processing"""
text = text.lower()
# Keep letters, numbers, spaces and apostrophes - fixed regex
text = re.sub(r'[^\w\s\'\u0600-\u06FF]', '', text)
text = ' '.join(text.split())
return text
# Function to synthesize speech
def synthesize_speech(text, voice_type="male", speed=1.0):
"""Generate speech from text using the specified voice type"""
try:
# Select speaker embedding based on voice type
if voice_type == "male":
speaker_embeddings = male_embedding.to(device)
else:
speaker_embeddings = female_embedding.to(device)
# Normalize and tokenize input text
normalized_text = normalize_text(text)
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
# Generate speech
with torch.no_grad():
speech = model.generate_speech(
inputs["input_ids"],
speaker_embeddings,
vocoder=vocoder
)
# Convert to numpy array and adjust speed if needed
speech_np = speech.cpu().numpy()
# Apply speed adjustment (simple resampling)
if speed != 1.0:
# This is a simple approach - for production use a proper resampling library
import numpy as np
from scipy import signal
sample_rate = 16000
new_length = int(len(speech_np) / speed)
speech_np = signal.resample(speech_np, new_length)
# Save temporary audio file
output_file = "output_speech.wav"
sf.write(output_file, speech_np, 16000)
return output_file, None
except Exception as e:
return None, f"Error generating speech: {str(e)}"
# Gradio imports need to be added
import gradio as gr
# Custom CSS for better design
custom_css = """
.gradio-container {
font-family: 'Poppins', 'Arial', sans-serif;
max-width: 750px;
margin: auto;
}
.main-header {
background: linear-gradient(90deg, #c31432, #240b36);
color: white;
padding: 1.5em;
border-radius: 10px;
text-align: center;
margin-bottom: 1em;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-header h1 {
font-size: 2.2em;
margin-bottom: 0.3em;
}
.main-header p {
font-size: 1.1em;
opacity: 0.9;
}
footer {
text-align: center;
margin-top: 2em;
color: #555;
font-size: 0.9em;
}
.flag-icon {
width: 24px;
height: 24px;
vertical-align: middle;
margin-right: 8px;
}
.example-header {
font-weight: bold;
color: #c31432;
margin-top: 1em;
}
.info-box {
background-color: #f9f9f9;
border-left: 4px solid #c31432;
padding: 1em;
margin: 1em 0;
border-radius: 5px;
}
.voice-selector {
display: flex;
justify-content: center;
gap: 20px;
margin: 10px 0;
}
.voice-option {
border: 2px solid #ddd;
border-radius: 10px;
padding: 10px 15px;
transition: all 0.3s ease;
cursor: pointer;
}
.voice-option.selected {
border-color: #c31432;
background-color: #fff5f5;
}
.slider-container {
margin: 20px 0;
}
"""
# Create Gradio interface with improved design
with gr.Blocks(css=custom_css) as demo:
gr.HTML(
"""
<div class="main-header">
<h1>🇲🇦 Moroccan Darija Text-to-Speech 🎧</h1>
<p>Convert Moroccan Arabic (Darija) text into natural-sounding speech</p>
</div>
"""
)
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div class="info-box">
<p>This model was fine-tuned on the DODa audio dataset to produce high-quality
Darija speech from text input. You can adjust the voice and speed below.</p>
</div>
"""
)
text_input = gr.Textbox(
label="Enter Darija Text",
placeholder="Kteb chi jomla b darija hna...",
lines=3
)
with gr.Row():
voice_type = gr.Radio(
["male", "female"],
label="Voice Type",
value="male"
)
speed = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed"
)
generate_btn = gr.Button("Generate Speech", variant="primary")
gr.HTML(
"""
<div class="example-header">Example phrases:</div>
<ul>
<li>"Ana Nadi Bezzaaf hhh"</li>
<li>"Lyoum ajwaa zwina bezzaf."</li>
<li>"lmaghrib ahssan blad fi l3alam "</li>
</ul>
"""
)
with gr.Column():
audio_output = gr.Audio(label="Generated Speech")
error_output = gr.Textbox(label="Error (if any)", visible=False)
gr.Examples(
examples=[
["Ana Nadi Bezzaaf hhh", "male", 1.0],
["Lyoum ajwaa zwina bezzaf.", "female", 1.0],
["lmaghrib ahssan blad fi l3alam", "male", 1.0],
["Filistine hora mina lbar ila lbahr", "female", 0.8],
],
inputs=[text_input, voice_type, speed],
outputs=[audio_output, error_output],
fn=synthesize_speech
)
gr.HTML(
"""
<footer>
<p>Developed by HAMMALE | Powered by Microsoft SpeechT5 | Data: DODa</p>
</footer>
"""
)
# Set button click action
generate_btn.click(
fn=synthesize_speech,
inputs=[text_input, voice_type, speed],
outputs=[audio_output, error_output]
)
# Launch the demo
if __name__ == "__main__":
demo.launch()
|