Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from tqdm import tqdm | |
from abc import ABC, abstractmethod | |
from .utils.enums import MultiTokenKind, RetrievalTechniques | |
from .processor import RetrievalProcessor | |
from .utils.logit_lens import ReverseLogitLens | |
from .utils.model_utils import extract_token_i_hidden_states | |
class WordRetrieverBase(ABC): | |
def __init__(self, model, tokenizer): | |
self.model = model | |
self.tokenizer = tokenizer | |
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3): | |
pass | |
class PatchscopesRetriever(WordRetrieverBase): | |
def __init__( | |
self, | |
model, | |
tokenizer, | |
representation_prompt: str = "{word}", | |
patchscopes_prompt: str = "Next is the same word twice: 1) {word} 2)", | |
prompt_target_placeholder: str = "{word}", | |
representation_token_idx_to_extract: int = -1, | |
num_tokens_to_generate: int = 10, | |
): | |
super().__init__(model, tokenizer) | |
self.prompt_input_ids, self.prompt_target_idx = \ | |
self._build_prompt_input_ids_template(patchscopes_prompt, prompt_target_placeholder) | |
self._prepare_representation_prompt = \ | |
self._build_representation_prompt_func(representation_prompt, prompt_target_placeholder) | |
self.representation_token_idx = representation_token_idx_to_extract | |
self.num_tokens_to_generate = num_tokens_to_generate | |
def _build_prompt_input_ids_template(self, prompt, target_placeholder): | |
prompt_input_ids = [self.tokenizer.bos_token_id] if self.tokenizer.bos_token_id is not None else [] | |
target_idx = [] | |
if prompt: | |
assert target_placeholder is not None, \ | |
"Trying to set a prompt for Patchscopes without defining the prompt's target placeholder string, e.g., [MASK]" | |
prompt_parts = prompt.split(target_placeholder) | |
for part_i, prompt_part in enumerate(prompt_parts): | |
prompt_input_ids += self.tokenizer.encode(prompt_part, add_special_tokens=False) | |
if part_i < len(prompt_parts)-1: | |
target_idx += [len(prompt_input_ids)] | |
prompt_input_ids += [0] | |
else: | |
prompt_input_ids += [0] | |
target_idx = [len(prompt_input_ids)] | |
prompt_input_ids = torch.tensor(prompt_input_ids, dtype=torch.long) | |
target_idx = torch.tensor(target_idx, dtype=torch.long) | |
return prompt_input_ids, target_idx | |
def _build_representation_prompt_func(self, prompt, target_placeholder): | |
return lambda word: prompt.replace(target_placeholder, word) | |
def generate_states(self, tokenizer, word='Wakanda', with_prompt=True): | |
prompt = self.generate_prompt() if with_prompt else word | |
input_ids = tokenizer.encode(prompt, return_tensors='pt') | |
return input_ids | |
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=None): | |
self.model.eval() | |
# insert hidden states into patchscopes prompt | |
if hidden_states.dim() == 1: | |
hidden_states = hidden_states.unsqueeze(0) | |
inputs_embeds = self.model.get_input_embeddings()(self.prompt_input_ids.to(self.model.device)).unsqueeze(0) | |
batched_patchscope_inputs = inputs_embeds.repeat(len(hidden_states), 1, 1).to(hidden_states.dtype) | |
batched_patchscope_inputs[:, self.prompt_target_idx] = hidden_states.unsqueeze(1).to(self.model.device) | |
attention_mask = (self.prompt_input_ids != self.tokenizer.eos_token_id).long().unsqueeze(0).repeat( | |
len(hidden_states), 1).to(self.model.device) | |
num_tokens_to_generate = num_tokens_to_generate if num_tokens_to_generate else self.num_tokens_to_generate | |
with torch.no_grad(): | |
patchscope_outputs = self.model.generate( | |
do_sample=False, num_beams=1, top_p=1.0, temperature=None, | |
inputs_embeds=batched_patchscope_inputs,# attention_mask=attention_mask, | |
max_new_tokens=num_tokens_to_generate, pad_token_id=self.tokenizer.eos_token_id, ) | |
decoded_patchscope_outputs = self.tokenizer.batch_decode(patchscope_outputs) | |
return decoded_patchscope_outputs | |
def extract_hidden_states(self, word): | |
representation_input = self._prepare_representation_prompt(word) | |
last_token_hidden_states = extract_token_i_hidden_states( | |
self.model, self.tokenizer, representation_input, token_idx_to_extract=self.representation_token_idx, return_dict=False, verbose=False) | |
return last_token_hidden_states | |
def get_hidden_states_and_retrieve_word(self, word, num_tokens_to_generate=None): | |
last_token_hidden_states = self.extract_hidden_states(word) | |
patchscopes_description_by_layers = self.retrieve_word( | |
last_token_hidden_states, num_tokens_to_generate=num_tokens_to_generate) | |
return patchscopes_description_by_layers, last_token_hidden_states | |
class ReverseLogitLensRetriever(WordRetrieverBase): | |
def __init__(self, model, tokenizer, device='cuda', dtype=torch.float16): | |
super().__init__(model, tokenizer) | |
self.reverse_logit_lens = ReverseLogitLens.from_model(model).to(device).to(dtype) | |
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3): | |
result = self.reverse_logit_lens(hidden_states, layer_idx) | |
token = self.tokenizer.decode(torch.argmax(result, dim=-1).item()) | |
return token | |
class AnalysisWordRetriever: | |
def __init__(self, model, tokenizer, multi_token_kind, num_tokens_to_generate=1, add_context=True, | |
model_name='LLaMa-2B', device='cuda', dataset=None): | |
self.model = model.to(device) | |
self.tokenizer = tokenizer | |
self.multi_token_kind = multi_token_kind | |
self.num_tokens_to_generate = num_tokens_to_generate | |
self.add_context = add_context | |
self.model_name = model_name | |
self.device = device | |
self.dataset = dataset | |
self.retriever = self._initialize_retriever() | |
self.RetrievalTechniques = (RetrievalTechniques.Patchscopes if self.multi_token_kind == MultiTokenKind.Natural | |
else RetrievalTechniques.ReverseLogitLens) | |
self.whitespace_token = 'Ġ' if model_name in ['gemma-2-9b', 'pythia-6.9b', 'LLaMA3-8B', 'Yi-6B'] else '▁' | |
self.processor = RetrievalProcessor(self.model, self.tokenizer, self.multi_token_kind, | |
self.num_tokens_to_generate, self.add_context, self.model_name, | |
self.whitespace_token) | |
def _initialize_retriever(self): | |
if self.multi_token_kind == MultiTokenKind.Natural: | |
return PatchscopesRetriever(self.model, self.tokenizer) | |
else: | |
return ReverseLogitLensRetriever(self.model, self.tokenizer) | |
def retrieve_words_in_dataset(self, number_of_examples_to_retrieve=2, max_length=1000): | |
self.model.eval() | |
results = [] | |
for text in tqdm(self.dataset['train']['text'][:number_of_examples_to_retrieve], self.model_name): | |
tokenized_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=max_length).to( | |
self.device) | |
tokens = tokenized_input.input_ids[0] | |
print(f'Processing text: {text}') | |
i = 5 | |
while i < len(tokens): | |
if self.multi_token_kind == MultiTokenKind.Natural: | |
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_word( | |
tokens, i, device=self.device) | |
elif self.multi_token_kind == MultiTokenKind.Typo: | |
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_typo( | |
tokens, i, device=self.device) | |
else: | |
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_separated( | |
tokens, i, device=self.device) | |
if len(word_tokens) > 1: | |
with torch.no_grad(): | |
outputs = self.model(**tokenized_combined_text, output_hidden_states=True) | |
hidden_states = outputs.hidden_states | |
for layer_idx, hidden_state in enumerate(hidden_states): | |
postfix_hidden_state = hidden_states[layer_idx][0, -1, :].unsqueeze(0) | |
retrieved_word_str = self.retriever.retrieve_word(postfix_hidden_state, layer_idx=layer_idx, | |
num_tokens_to_generate=len(word_tokens)) | |
results.append({ | |
'text': combined_text, | |
'original_word': original_word, | |
'word': word, | |
'word_tokens': self.tokenizer.convert_ids_to_tokens(word_tokens), | |
'num_tokens': len(word_tokens), | |
'layer': layer_idx, | |
'retrieved_word_str': retrieved_word_str, | |
'context': "With Context" if self.add_context else "Without Context" | |
}) | |
else: | |
i = j | |
return results | |