File size: 9,545 Bytes
b7e1c46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from tqdm import tqdm
from abc import ABC, abstractmethod

from .utils.enums import MultiTokenKind, RetrievalTechniques
from .processor import RetrievalProcessor
from .utils.logit_lens import ReverseLogitLens
from .utils.model_utils import extract_token_i_hidden_states


class WordRetrieverBase(ABC):
    def __init__(self, model, tokenizer):
        self.model = model
        self.tokenizer = tokenizer

    @abstractmethod
    def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
        pass


class PatchscopesRetriever(WordRetrieverBase):
    def __init__(
            self,
            model,
            tokenizer,
            representation_prompt: str = "{word}",
            patchscopes_prompt: str = "Next is the same word twice: 1) {word} 2)",
            prompt_target_placeholder: str = "{word}",
            representation_token_idx_to_extract: int = -1,
            num_tokens_to_generate: int = 10,
    ):
        super().__init__(model, tokenizer)
        self.prompt_input_ids, self.prompt_target_idx = \
            self._build_prompt_input_ids_template(patchscopes_prompt, prompt_target_placeholder)
        self._prepare_representation_prompt = \
            self._build_representation_prompt_func(representation_prompt, prompt_target_placeholder)
        self.representation_token_idx = representation_token_idx_to_extract
        self.num_tokens_to_generate = num_tokens_to_generate

    def _build_prompt_input_ids_template(self, prompt, target_placeholder):
        prompt_input_ids = [self.tokenizer.bos_token_id] if self.tokenizer.bos_token_id is not None else []
        target_idx = []

        if prompt:
            assert target_placeholder is not None, \
                "Trying to set a prompt for Patchscopes without defining the prompt's target placeholder string, e.g., [MASK]"

            prompt_parts = prompt.split(target_placeholder)
            for part_i, prompt_part in enumerate(prompt_parts):
                prompt_input_ids += self.tokenizer.encode(prompt_part, add_special_tokens=False)
                if part_i < len(prompt_parts)-1:
                    target_idx += [len(prompt_input_ids)]
                    prompt_input_ids += [0]
        else:
            prompt_input_ids += [0]
            target_idx = [len(prompt_input_ids)]

        prompt_input_ids = torch.tensor(prompt_input_ids, dtype=torch.long)
        target_idx = torch.tensor(target_idx, dtype=torch.long)
        return prompt_input_ids, target_idx

    def _build_representation_prompt_func(self, prompt, target_placeholder):
        return lambda word: prompt.replace(target_placeholder, word)

    def generate_states(self, tokenizer, word='Wakanda', with_prompt=True):
        prompt = self.generate_prompt() if with_prompt else word
        input_ids = tokenizer.encode(prompt, return_tensors='pt')
        return input_ids

    def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=None):
        self.model.eval()

        # insert hidden states into patchscopes prompt
        if hidden_states.dim() == 1:
            hidden_states = hidden_states.unsqueeze(0)

        inputs_embeds = self.model.get_input_embeddings()(self.prompt_input_ids.to(self.model.device)).unsqueeze(0)
        batched_patchscope_inputs = inputs_embeds.repeat(len(hidden_states), 1, 1).to(hidden_states.dtype)
        batched_patchscope_inputs[:, self.prompt_target_idx] = hidden_states.unsqueeze(1).to(self.model.device)

        attention_mask = (self.prompt_input_ids != self.tokenizer.eos_token_id).long().unsqueeze(0).repeat(
            len(hidden_states), 1).to(self.model.device)

        num_tokens_to_generate = num_tokens_to_generate if num_tokens_to_generate else self.num_tokens_to_generate

        with torch.no_grad():
            patchscope_outputs = self.model.generate(
                do_sample=False, num_beams=1, top_p=1.0, temperature=None,
                inputs_embeds=batched_patchscope_inputs,# attention_mask=attention_mask,
                max_new_tokens=num_tokens_to_generate, pad_token_id=self.tokenizer.eos_token_id, )

        decoded_patchscope_outputs = self.tokenizer.batch_decode(patchscope_outputs)
        return decoded_patchscope_outputs

    def extract_hidden_states(self, word):
        representation_input = self._prepare_representation_prompt(word)

        last_token_hidden_states = extract_token_i_hidden_states(
            self.model, self.tokenizer, representation_input, token_idx_to_extract=self.representation_token_idx, return_dict=False, verbose=False)

        return last_token_hidden_states

    def get_hidden_states_and_retrieve_word(self, word, num_tokens_to_generate=None):
        last_token_hidden_states = self.extract_hidden_states(word)
        patchscopes_description_by_layers = self.retrieve_word(
            last_token_hidden_states, num_tokens_to_generate=num_tokens_to_generate)

        return patchscopes_description_by_layers, last_token_hidden_states


class ReverseLogitLensRetriever(WordRetrieverBase):
    def __init__(self, model, tokenizer, device='cuda', dtype=torch.float16):
        super().__init__(model, tokenizer)
        self.reverse_logit_lens = ReverseLogitLens.from_model(model).to(device).to(dtype)

    def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
        result = self.reverse_logit_lens(hidden_states, layer_idx)
        token = self.tokenizer.decode(torch.argmax(result, dim=-1).item())
        return token


class AnalysisWordRetriever:
    def __init__(self, model, tokenizer, multi_token_kind, num_tokens_to_generate=1, add_context=True,
                 model_name='LLaMa-2B', device='cuda', dataset=None):
        self.model = model.to(device)
        self.tokenizer = tokenizer
        self.multi_token_kind = multi_token_kind
        self.num_tokens_to_generate = num_tokens_to_generate
        self.add_context = add_context
        self.model_name = model_name
        self.device = device
        self.dataset = dataset
        self.retriever = self._initialize_retriever()
        self.RetrievalTechniques = (RetrievalTechniques.Patchscopes if self.multi_token_kind == MultiTokenKind.Natural
                                    else RetrievalTechniques.ReverseLogitLens)
        self.whitespace_token = 'Ġ' if model_name in ['gemma-2-9b', 'pythia-6.9b', 'LLaMA3-8B', 'Yi-6B'] else '▁'
        self.processor = RetrievalProcessor(self.model, self.tokenizer, self.multi_token_kind,
                                            self.num_tokens_to_generate, self.add_context, self.model_name,
                                            self.whitespace_token)

    def _initialize_retriever(self):
        if self.multi_token_kind == MultiTokenKind.Natural:
            return PatchscopesRetriever(self.model, self.tokenizer)
        else:
            return ReverseLogitLensRetriever(self.model, self.tokenizer)

    def retrieve_words_in_dataset(self, number_of_examples_to_retrieve=2, max_length=1000):
        self.model.eval()
        results = []

        for text in tqdm(self.dataset['train']['text'][:number_of_examples_to_retrieve], self.model_name):
            tokenized_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=max_length).to(
                self.device)
            tokens = tokenized_input.input_ids[0]
            print(f'Processing text: {text}')
            i = 5
            while i < len(tokens):
                if self.multi_token_kind == MultiTokenKind.Natural:
                    j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_word(
                        tokens, i, device=self.device)
                elif self.multi_token_kind == MultiTokenKind.Typo:
                    j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_typo(
                        tokens, i, device=self.device)
                else:
                    j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_separated(
                        tokens, i, device=self.device)

                if len(word_tokens) > 1:
                    with torch.no_grad():
                        outputs = self.model(**tokenized_combined_text, output_hidden_states=True)

                    hidden_states = outputs.hidden_states
                    for layer_idx, hidden_state in enumerate(hidden_states):
                        postfix_hidden_state = hidden_states[layer_idx][0, -1, :].unsqueeze(0)
                        retrieved_word_str = self.retriever.retrieve_word(postfix_hidden_state, layer_idx=layer_idx,
                                                                          num_tokens_to_generate=len(word_tokens))
                        results.append({
                            'text': combined_text,
                            'original_word': original_word,
                            'word': word,
                            'word_tokens': self.tokenizer.convert_ids_to_tokens(word_tokens),
                            'num_tokens': len(word_tokens),
                            'layer': layer_idx,
                            'retrieved_word_str': retrieved_word_str,
                            'context': "With Context" if self.add_context else "Without Context"
                        })
                else:
                    i = j
        return results