Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,545 Bytes
b7e1c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import torch
from tqdm import tqdm
from abc import ABC, abstractmethod
from .utils.enums import MultiTokenKind, RetrievalTechniques
from .processor import RetrievalProcessor
from .utils.logit_lens import ReverseLogitLens
from .utils.model_utils import extract_token_i_hidden_states
class WordRetrieverBase(ABC):
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
@abstractmethod
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
pass
class PatchscopesRetriever(WordRetrieverBase):
def __init__(
self,
model,
tokenizer,
representation_prompt: str = "{word}",
patchscopes_prompt: str = "Next is the same word twice: 1) {word} 2)",
prompt_target_placeholder: str = "{word}",
representation_token_idx_to_extract: int = -1,
num_tokens_to_generate: int = 10,
):
super().__init__(model, tokenizer)
self.prompt_input_ids, self.prompt_target_idx = \
self._build_prompt_input_ids_template(patchscopes_prompt, prompt_target_placeholder)
self._prepare_representation_prompt = \
self._build_representation_prompt_func(representation_prompt, prompt_target_placeholder)
self.representation_token_idx = representation_token_idx_to_extract
self.num_tokens_to_generate = num_tokens_to_generate
def _build_prompt_input_ids_template(self, prompt, target_placeholder):
prompt_input_ids = [self.tokenizer.bos_token_id] if self.tokenizer.bos_token_id is not None else []
target_idx = []
if prompt:
assert target_placeholder is not None, \
"Trying to set a prompt for Patchscopes without defining the prompt's target placeholder string, e.g., [MASK]"
prompt_parts = prompt.split(target_placeholder)
for part_i, prompt_part in enumerate(prompt_parts):
prompt_input_ids += self.tokenizer.encode(prompt_part, add_special_tokens=False)
if part_i < len(prompt_parts)-1:
target_idx += [len(prompt_input_ids)]
prompt_input_ids += [0]
else:
prompt_input_ids += [0]
target_idx = [len(prompt_input_ids)]
prompt_input_ids = torch.tensor(prompt_input_ids, dtype=torch.long)
target_idx = torch.tensor(target_idx, dtype=torch.long)
return prompt_input_ids, target_idx
def _build_representation_prompt_func(self, prompt, target_placeholder):
return lambda word: prompt.replace(target_placeholder, word)
def generate_states(self, tokenizer, word='Wakanda', with_prompt=True):
prompt = self.generate_prompt() if with_prompt else word
input_ids = tokenizer.encode(prompt, return_tensors='pt')
return input_ids
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=None):
self.model.eval()
# insert hidden states into patchscopes prompt
if hidden_states.dim() == 1:
hidden_states = hidden_states.unsqueeze(0)
inputs_embeds = self.model.get_input_embeddings()(self.prompt_input_ids.to(self.model.device)).unsqueeze(0)
batched_patchscope_inputs = inputs_embeds.repeat(len(hidden_states), 1, 1).to(hidden_states.dtype)
batched_patchscope_inputs[:, self.prompt_target_idx] = hidden_states.unsqueeze(1).to(self.model.device)
attention_mask = (self.prompt_input_ids != self.tokenizer.eos_token_id).long().unsqueeze(0).repeat(
len(hidden_states), 1).to(self.model.device)
num_tokens_to_generate = num_tokens_to_generate if num_tokens_to_generate else self.num_tokens_to_generate
with torch.no_grad():
patchscope_outputs = self.model.generate(
do_sample=False, num_beams=1, top_p=1.0, temperature=None,
inputs_embeds=batched_patchscope_inputs,# attention_mask=attention_mask,
max_new_tokens=num_tokens_to_generate, pad_token_id=self.tokenizer.eos_token_id, )
decoded_patchscope_outputs = self.tokenizer.batch_decode(patchscope_outputs)
return decoded_patchscope_outputs
def extract_hidden_states(self, word):
representation_input = self._prepare_representation_prompt(word)
last_token_hidden_states = extract_token_i_hidden_states(
self.model, self.tokenizer, representation_input, token_idx_to_extract=self.representation_token_idx, return_dict=False, verbose=False)
return last_token_hidden_states
def get_hidden_states_and_retrieve_word(self, word, num_tokens_to_generate=None):
last_token_hidden_states = self.extract_hidden_states(word)
patchscopes_description_by_layers = self.retrieve_word(
last_token_hidden_states, num_tokens_to_generate=num_tokens_to_generate)
return patchscopes_description_by_layers, last_token_hidden_states
class ReverseLogitLensRetriever(WordRetrieverBase):
def __init__(self, model, tokenizer, device='cuda', dtype=torch.float16):
super().__init__(model, tokenizer)
self.reverse_logit_lens = ReverseLogitLens.from_model(model).to(device).to(dtype)
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
result = self.reverse_logit_lens(hidden_states, layer_idx)
token = self.tokenizer.decode(torch.argmax(result, dim=-1).item())
return token
class AnalysisWordRetriever:
def __init__(self, model, tokenizer, multi_token_kind, num_tokens_to_generate=1, add_context=True,
model_name='LLaMa-2B', device='cuda', dataset=None):
self.model = model.to(device)
self.tokenizer = tokenizer
self.multi_token_kind = multi_token_kind
self.num_tokens_to_generate = num_tokens_to_generate
self.add_context = add_context
self.model_name = model_name
self.device = device
self.dataset = dataset
self.retriever = self._initialize_retriever()
self.RetrievalTechniques = (RetrievalTechniques.Patchscopes if self.multi_token_kind == MultiTokenKind.Natural
else RetrievalTechniques.ReverseLogitLens)
self.whitespace_token = 'Ġ' if model_name in ['gemma-2-9b', 'pythia-6.9b', 'LLaMA3-8B', 'Yi-6B'] else '▁'
self.processor = RetrievalProcessor(self.model, self.tokenizer, self.multi_token_kind,
self.num_tokens_to_generate, self.add_context, self.model_name,
self.whitespace_token)
def _initialize_retriever(self):
if self.multi_token_kind == MultiTokenKind.Natural:
return PatchscopesRetriever(self.model, self.tokenizer)
else:
return ReverseLogitLensRetriever(self.model, self.tokenizer)
def retrieve_words_in_dataset(self, number_of_examples_to_retrieve=2, max_length=1000):
self.model.eval()
results = []
for text in tqdm(self.dataset['train']['text'][:number_of_examples_to_retrieve], self.model_name):
tokenized_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=max_length).to(
self.device)
tokens = tokenized_input.input_ids[0]
print(f'Processing text: {text}')
i = 5
while i < len(tokens):
if self.multi_token_kind == MultiTokenKind.Natural:
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_word(
tokens, i, device=self.device)
elif self.multi_token_kind == MultiTokenKind.Typo:
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_typo(
tokens, i, device=self.device)
else:
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_separated(
tokens, i, device=self.device)
if len(word_tokens) > 1:
with torch.no_grad():
outputs = self.model(**tokenized_combined_text, output_hidden_states=True)
hidden_states = outputs.hidden_states
for layer_idx, hidden_state in enumerate(hidden_states):
postfix_hidden_state = hidden_states[layer_idx][0, -1, :].unsqueeze(0)
retrieved_word_str = self.retriever.retrieve_word(postfix_hidden_state, layer_idx=layer_idx,
num_tokens_to_generate=len(word_tokens))
results.append({
'text': combined_text,
'original_word': original_word,
'word': word,
'word_tokens': self.tokenizer.convert_ids_to_tokens(word_tokens),
'num_tokens': len(word_tokens),
'layer': layer_idx,
'retrieved_word_str': retrieved_word_str,
'context': "With Context" if self.add_context else "Without Context"
})
else:
i = j
return results
|