Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from huggingface_hub import login | |
# run once at startup | |
if "HF_TOKEN" in os.environ: | |
login(token=os.environ["HF_TOKEN"]) | |
# app.py | |
import os; os.environ.setdefault('HF_HOME', '/data/hf-cache') | |
os.environ.setdefault('HF_HUB_ENABLE_HF_TRANSFER', '1') | |
from huggingface_hub import login | |
login(os.getenv("HF_TOKEN", "")) | |
from spaces import GPU | |
import torch | |
from exceptiongroup import catch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
import pandas as pd | |
from functools import lru_cache | |
# ---------------------------------------------------------------------- | |
# IMPORTANT: This version uses the PatchscopesRetriever implementation | |
# from the Tokens2Words paper (https://github.com/schwartz-lab-NLP/Tokens2Words) | |
# ---------------------------------------------------------------------- | |
import torch | |
from tqdm import tqdm | |
from abc import ABC, abstractmethod | |
from enums import MultiTokenKind, RetrievalTechniques | |
from processor import RetrievalProcessor | |
from logit_lens import ReverseLogitLens | |
from model_utils import extract_token_i_hidden_states | |
class WordRetrieverBase(ABC): | |
def __init__(self, model, tokenizer): | |
self.model = model | |
self.tokenizer = tokenizer | |
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3): | |
pass | |
class PatchscopesRetriever(WordRetrieverBase): | |
def __init__( | |
self, | |
model, | |
tokenizer, | |
representation_prompt: str = "{word}", | |
patchscopes_prompt: str = "Next is the same word twice: 1) {word} 2)", | |
prompt_target_placeholder: str = "{word}", | |
representation_token_idx_to_extract: int = -1, | |
num_tokens_to_generate: int = 10, | |
): | |
super().__init__(model, tokenizer) | |
self.prompt_input_ids, self.prompt_target_idx = \ | |
self._build_prompt_input_ids_template(patchscopes_prompt, prompt_target_placeholder) | |
self._prepare_representation_prompt = \ | |
self._build_representation_prompt_func(representation_prompt, prompt_target_placeholder) | |
self.representation_token_idx = representation_token_idx_to_extract | |
self.num_tokens_to_generate = num_tokens_to_generate | |
def _build_prompt_input_ids_template(self, prompt, target_placeholder): | |
prompt_input_ids = [self.tokenizer.bos_token_id] if self.tokenizer.bos_token_id is not None else [] | |
target_idx = [] | |
if prompt: | |
assert target_placeholder is not None, \ | |
"Trying to set a prompt for Patchscopes without defining the prompt's target placeholder string, e.g., [MASK]" | |
prompt_parts = prompt.split(target_placeholder) | |
for part_i, prompt_part in enumerate(prompt_parts): | |
prompt_input_ids += self.tokenizer.encode(prompt_part, add_special_tokens=False) | |
if part_i < len(prompt_parts)-1: | |
target_idx += [len(prompt_input_ids)] | |
prompt_input_ids += [0] | |
else: | |
prompt_input_ids += [0] | |
target_idx = [len(prompt_input_ids)] | |
prompt_input_ids = torch.tensor(prompt_input_ids, dtype=torch.long) | |
target_idx = torch.tensor(target_idx, dtype=torch.long) | |
return prompt_input_ids, target_idx | |
def _build_representation_prompt_func(self, prompt, target_placeholder): | |
return lambda word: prompt.replace(target_placeholder, word) | |
def generate_states(self, tokenizer, word='Wakanda', with_prompt=True): | |
prompt = self.generate_prompt() if with_prompt else word | |
input_ids = tokenizer.encode(prompt, return_tensors='pt') | |
return input_ids | |
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=None): | |
self.model.eval() | |
# insert hidden states into patchscopes prompt | |
if hidden_states.dim() == 1: | |
hidden_states = hidden_states.unsqueeze(0) | |
inputs_embeds = self.model.get_input_embeddings()(self.prompt_input_ids.to(self.model.device)).unsqueeze(0) | |
batched_patchscope_inputs = inputs_embeds.repeat(len(hidden_states), 1, 1).to(hidden_states.dtype) | |
batched_patchscope_inputs[:, self.prompt_target_idx] = hidden_states.unsqueeze(1).to(self.model.device) | |
attention_mask = (self.prompt_input_ids != self.tokenizer.eos_token_id).long().unsqueeze(0).repeat( | |
len(hidden_states), 1).to(self.model.device) | |
num_tokens_to_generate = num_tokens_to_generate if num_tokens_to_generate else self.num_tokens_to_generate | |
with torch.no_grad(): | |
patchscope_outputs = self.model.generate( | |
do_sample=False, num_beams=1, top_p=1.0, temperature=None, | |
inputs_embeds=batched_patchscope_inputs,# attention_mask=attention_mask, | |
max_new_tokens=num_tokens_to_generate, pad_token_id=self.tokenizer.eos_token_id, ) | |
decoded_patchscope_outputs = self.tokenizer.batch_decode(patchscope_outputs) | |
return decoded_patchscope_outputs | |
def extract_hidden_states(self, word): | |
representation_input = self._prepare_representation_prompt(word) | |
last_token_hidden_states = extract_token_i_hidden_states( | |
self.model, self.tokenizer, representation_input, token_idx_to_extract=self.representation_token_idx, return_dict=False, verbose=False) | |
return last_token_hidden_states | |
def get_hidden_states_and_retrieve_word(self, word, num_tokens_to_generate=None): | |
last_token_hidden_states = self.extract_hidden_states(word) | |
patchscopes_description_by_layers = self.retrieve_word( | |
last_token_hidden_states, num_tokens_to_generate=num_tokens_to_generate) | |
return patchscopes_description_by_layers, last_token_hidden_states | |
class ReverseLogitLensRetriever(WordRetrieverBase): | |
def __init__(self, model, tokenizer, device='cuda', dtype=torch.float16): | |
super().__init__(model, tokenizer) | |
self.reverse_logit_lens = ReverseLogitLens.from_model(model).to(device).to(dtype) | |
def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3): | |
result = self.reverse_logit_lens(hidden_states, layer_idx) | |
token = self.tokenizer.decode(torch.argmax(result, dim=-1).item()) | |
return token | |
class AnalysisWordRetriever: | |
def __init__(self, model, tokenizer, multi_token_kind, num_tokens_to_generate=1, add_context=True, | |
model_name='LLaMa-2B', device='cuda', dataset=None): | |
self.model = model.to(device) | |
self.tokenizer = tokenizer | |
self.multi_token_kind = multi_token_kind | |
self.num_tokens_to_generate = num_tokens_to_generate | |
self.add_context = add_context | |
self.model_name = model_name | |
self.device = device | |
self.dataset = dataset | |
self.retriever = self._initialize_retriever() | |
self.RetrievalTechniques = (RetrievalTechniques.Patchscopes if self.multi_token_kind == MultiTokenKind.Natural | |
else RetrievalTechniques.ReverseLogitLens) | |
self.whitespace_token = 'Ġ' if model_name in ['gemma-2-9b', 'pythia-6.9b', 'LLaMA3-8B', 'Yi-6B'] else '▁' | |
self.processor = RetrievalProcessor(self.model, self.tokenizer, self.multi_token_kind, | |
self.num_tokens_to_generate, self.add_context, self.model_name, | |
self.whitespace_token) | |
def _initialize_retriever(self): | |
if self.multi_token_kind == MultiTokenKind.Natural: | |
return PatchscopesRetriever(self.model, self.tokenizer) | |
else: | |
return ReverseLogitLensRetriever(self.model, self.tokenizer) | |
def retrieve_words_in_dataset(self, number_of_examples_to_retrieve=2, max_length=1000): | |
self.model.eval() | |
results = [] | |
for text in tqdm(self.dataset['train']['text'][:number_of_examples_to_retrieve], self.model_name): | |
tokenized_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=max_length).to( | |
self.device) | |
tokens = tokenized_input.input_ids[0] | |
print(f'Processing text: {text}') | |
i = 5 | |
while i < len(tokens): | |
if self.multi_token_kind == MultiTokenKind.Natural: | |
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_word( | |
tokens, i, device=self.device) | |
elif self.multi_token_kind == MultiTokenKind.Typo: | |
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_typo( | |
tokens, i, device=self.device) | |
else: | |
j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_separated( | |
tokens, i, device=self.device) | |
if len(word_tokens) > 1: | |
with torch.no_grad(): | |
outputs = self.model(**tokenized_combined_text, output_hidden_states=True) | |
hidden_states = outputs.hidden_states | |
for layer_idx, hidden_state in enumerate(hidden_states): | |
postfix_hidden_state = hidden_states[layer_idx][0, -1, :].unsqueeze(0) | |
retrieved_word_str = self.retriever.retrieve_word(postfix_hidden_state, layer_idx=layer_idx, | |
num_tokens_to_generate=len(word_tokens)) | |
results.append({ | |
'text': combined_text, | |
'original_word': original_word, | |
'word': word, | |
'word_tokens': self.tokenizer.convert_ids_to_tokens(word_tokens), | |
'num_tokens': len(word_tokens), | |
'layer': layer_idx, | |
'retrieved_word_str': retrieved_word_str, | |
'context': "With Context" if self.add_context else "Without Context" | |
}) | |
else: | |
i = j | |
return results | |
DEFAULT_MODEL = "meta-llama/Llama-3.1-8B" # light default so the demo boots everywhere | |
DEVICE = ( | |
"cuda" if torch.cuda.is_available() else 'cpu' | |
) | |
def get_model_and_tokenizer(model_name: str): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16 , | |
output_hidden_states=True, | |
).to(DEVICE) | |
model.eval() | |
return model, tokenizer | |
def find_last_token_index(full_ids, word_ids): | |
"""Locate end position of word_ids inside full_ids (first match).""" | |
for i in range(len(full_ids) - len(word_ids) + 1): | |
if full_ids[i : i + len(word_ids)] == word_ids: | |
return i + len(word_ids) - 1 | |
return None | |
# this block runs on a job GPU | |
def analyse_word(model_name: str, word: str, patchscopes_template: str, context:str = ""): | |
try: | |
# text = context+ " " + word | |
model, tokenizer = get_model_and_tokenizer(model_name) | |
# Build extraction prompt (where hidden states will be collected) | |
extraction_prompt ="X" | |
# Identify last token position of the *word* inside the prompt IDs | |
word_token_ids = tokenizer.encode(word, add_special_tokens=False) | |
# Instantiate Patchscopes retriever | |
patch_retriever = PatchscopesRetriever( | |
model, | |
tokenizer, | |
extraction_prompt, | |
patchscopes_template, | |
prompt_target_placeholder="X", | |
) | |
# Run retrieval for the word across all layers (one pass) | |
retrieved_words = patch_retriever.get_hidden_states_and_retrieve_word( | |
word, | |
num_tokens_to_generate=len(tokenizer.tokenize(word)), | |
)[0] | |
# Build a table summarising which layers match | |
records = [] | |
matches = 0 | |
for layer_idx, ret_word in enumerate(retrieved_words): | |
match = ret_word.strip(" ") == word.strip(" ") | |
if match: | |
matches += 1 | |
records.append({"Layer": layer_idx, "Retrieved": ret_word, "Match?": "✓" if match else ""}) | |
df = pd.DataFrame(records) | |
def _style(row): | |
color = "background-color: lightgreen" if row["Match?"] else "" | |
return [color] * len(row) | |
html_table = df.style.apply(_style, axis=1).hide(axis="index").to_html(escape=False) | |
sub_tokens = tokenizer.convert_ids_to_tokens(word_token_ids) | |
top = ( | |
f"<p><b>Sub‑word tokens:</b> {' , '.join(sub_tokens)}</p>" | |
f"<p><b>Total matched layers:</b> {matches} / {len(retrieved_words)}</p>" | |
) | |
return top + html_table | |
except Exception as e: | |
return f"<p style='color:red'>❌ Error: {str(e)}</p>" | |
# ----------------------------- GRADIO UI ------------------------------- | |
with gr.Blocks(theme="soft") as demo: | |
gr.Markdown( | |
"""# Tokens→Words Viewer\nInteractively inspect how hidden‑state patching (Patchscopes) reveals a word's detokenised representation across model layers.""" | |
) | |
with gr.Row(): | |
model_name = gr.Dropdown( | |
label="🤖 Model", | |
choices=[DEFAULT_MODEL, "mistralai/Mistral-7B-v0.1", "meta-llama/Llama-2-7b-hf", "Qwen/Qwen2-7B"], | |
value=DEFAULT_MODEL, | |
) | |
patchscopes_template = gr.Textbox( | |
label="Patchscopes prompt (use X as placeholder)", | |
value="repeat the following word X twice: 1)X 2)", | |
) | |
# context_box = gr.Textbox(label="context", value="") | |
word_box = gr.Textbox(label="Word to test", value="interpretable") | |
run_btn = gr.Button("Analyse") | |
out_html = gr.HTML() | |
run_btn.click( | |
analyse_word, | |
inputs=[model_name, word_box, patchscopes_template], #, context_box], | |
outputs=out_html, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |