File size: 14,241 Bytes
3902836
 
 
 
 
 
ed75380
 
 
 
 
 
 
 
 
b7e1c46
cbfd114
b7e1c46
0f64adf
b7e1c46
 
0f64adf
b7e1c46
 
 
 
682420f
 
 
 
d844e87
3e871e6
58852d6
d844e87
682420f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58852d6
 
 
 
 
 
 
 
 
682420f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f64adf
b7e1c46
af9dbe3
 
 
b7e1c46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5abddb
1d82598
95d29eb
c023ca3
95d29eb
b7e1c46
95d29eb
 
b7e1c46
95d29eb
c023ca3
b7e1c46
95d29eb
 
 
 
 
 
 
 
b7e1c46
95d29eb
 
c023ca3
95d29eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e1c46
 
 
 
 
 
 
 
 
 
 
0276ae6
b7e1c46
 
 
 
 
 
c023ca3
b7e1c46
 
 
 
 
 
c023ca3
b7e1c46
 
 
 
95d29eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
from huggingface_hub import login

# run once at startup
if "HF_TOKEN" in os.environ:
    login(token=os.environ["HF_TOKEN"])

# app.py
import os; os.environ.setdefault('HF_HOME', '/data/hf-cache')
os.environ.setdefault('HF_HUB_ENABLE_HF_TRANSFER', '1')

from huggingface_hub import login
login(os.getenv("HF_TOKEN", ""))

from spaces import GPU
import torch
from exceptiongroup import catch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import pandas as pd
from functools import lru_cache

# ----------------------------------------------------------------------
# IMPORTANT: This version uses the PatchscopesRetriever implementation
# from the Tokens2Words paper (https://github.com/schwartz-lab-NLP/Tokens2Words)
# ----------------------------------------------------------------------
import torch
from tqdm import tqdm
from abc import ABC, abstractmethod

from enums import MultiTokenKind, RetrievalTechniques
from processor import RetrievalProcessor
from logit_lens import ReverseLogitLens
from model_utils import extract_token_i_hidden_states


class WordRetrieverBase(ABC):
    def __init__(self, model, tokenizer):
        self.model = model
        self.tokenizer = tokenizer

    @abstractmethod
    def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
        pass


class PatchscopesRetriever(WordRetrieverBase):
    def __init__(
            self,
            model,
            tokenizer,
            representation_prompt: str = "{word}",
            patchscopes_prompt: str = "Next is the same word twice: 1) {word} 2)",
            prompt_target_placeholder: str = "{word}",
            representation_token_idx_to_extract: int = -1,
            num_tokens_to_generate: int = 10,
    ):
        super().__init__(model, tokenizer)
        self.prompt_input_ids, self.prompt_target_idx = \
            self._build_prompt_input_ids_template(patchscopes_prompt, prompt_target_placeholder)
        self._prepare_representation_prompt = \
            self._build_representation_prompt_func(representation_prompt, prompt_target_placeholder)
        self.representation_token_idx = representation_token_idx_to_extract
        self.num_tokens_to_generate = num_tokens_to_generate

    def _build_prompt_input_ids_template(self, prompt, target_placeholder):
        prompt_input_ids = [self.tokenizer.bos_token_id] if self.tokenizer.bos_token_id is not None else []
        target_idx = []

        if prompt:
            assert target_placeholder is not None, \
                "Trying to set a prompt for Patchscopes without defining the prompt's target placeholder string, e.g., [MASK]"

            prompt_parts = prompt.split(target_placeholder)
            for part_i, prompt_part in enumerate(prompt_parts):
                prompt_input_ids += self.tokenizer.encode(prompt_part, add_special_tokens=False)
                if part_i < len(prompt_parts)-1:
                    target_idx += [len(prompt_input_ids)]
                    prompt_input_ids += [0]
        else:
            prompt_input_ids += [0]
            target_idx = [len(prompt_input_ids)]

        prompt_input_ids = torch.tensor(prompt_input_ids, dtype=torch.long)
        target_idx = torch.tensor(target_idx, dtype=torch.long)
        return prompt_input_ids, target_idx

    def _build_representation_prompt_func(self, prompt, target_placeholder):
        return lambda word: prompt.replace(target_placeholder, word)

    def generate_states(self, tokenizer, word='Wakanda', with_prompt=True):
        prompt = self.generate_prompt() if with_prompt else word
        input_ids = tokenizer.encode(prompt, return_tensors='pt')
        return input_ids

    def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=None):
        self.model.eval()

        # insert hidden states into patchscopes prompt
        if hidden_states.dim() == 1:
            hidden_states = hidden_states.unsqueeze(0)

        inputs_embeds = self.model.get_input_embeddings()(self.prompt_input_ids.to(self.model.device)).unsqueeze(0)
        batched_patchscope_inputs = inputs_embeds.repeat(len(hidden_states), 1, 1).to(hidden_states.dtype)
        batched_patchscope_inputs[:, self.prompt_target_idx] = hidden_states.unsqueeze(1).to(self.model.device)

        attention_mask = (self.prompt_input_ids != self.tokenizer.eos_token_id).long().unsqueeze(0).repeat(
            len(hidden_states), 1).to(self.model.device)

        num_tokens_to_generate = num_tokens_to_generate if num_tokens_to_generate else self.num_tokens_to_generate

        with torch.no_grad():
            patchscope_outputs = self.model.generate(
                do_sample=False, num_beams=1, top_p=1.0, temperature=None,
                inputs_embeds=batched_patchscope_inputs,# attention_mask=attention_mask,
                max_new_tokens=num_tokens_to_generate, pad_token_id=self.tokenizer.eos_token_id, )

        decoded_patchscope_outputs = self.tokenizer.batch_decode(patchscope_outputs)
        return decoded_patchscope_outputs

    def extract_hidden_states(self, word):
        representation_input = self._prepare_representation_prompt(word)

        last_token_hidden_states = extract_token_i_hidden_states(
            self.model, self.tokenizer, representation_input, token_idx_to_extract=self.representation_token_idx, return_dict=False, verbose=False)

        return last_token_hidden_states

    def get_hidden_states_and_retrieve_word(self, word, num_tokens_to_generate=None):
        last_token_hidden_states = self.extract_hidden_states(word)
        patchscopes_description_by_layers = self.retrieve_word(
            last_token_hidden_states, num_tokens_to_generate=num_tokens_to_generate)

        return patchscopes_description_by_layers, last_token_hidden_states


class ReverseLogitLensRetriever(WordRetrieverBase):
    def __init__(self, model, tokenizer, device='cuda', dtype=torch.float16):
        super().__init__(model, tokenizer)
        self.reverse_logit_lens = ReverseLogitLens.from_model(model).to(device).to(dtype)

    def retrieve_word(self, hidden_states, layer_idx=None, num_tokens_to_generate=3):
        result = self.reverse_logit_lens(hidden_states, layer_idx)
        token = self.tokenizer.decode(torch.argmax(result, dim=-1).item())
        return token


class AnalysisWordRetriever:
    def __init__(self, model, tokenizer, multi_token_kind, num_tokens_to_generate=1, add_context=True,
                 model_name='LLaMa-2B', device='cuda', dataset=None):
        self.model = model.to(device)
        self.tokenizer = tokenizer
        self.multi_token_kind = multi_token_kind
        self.num_tokens_to_generate = num_tokens_to_generate
        self.add_context = add_context
        self.model_name = model_name
        self.device = device
        self.dataset = dataset
        self.retriever = self._initialize_retriever()
        self.RetrievalTechniques = (RetrievalTechniques.Patchscopes if self.multi_token_kind == MultiTokenKind.Natural
                                    else RetrievalTechniques.ReverseLogitLens)
        self.whitespace_token = 'Ġ' if model_name in ['gemma-2-9b', 'pythia-6.9b', 'LLaMA3-8B', 'Yi-6B'] else '▁'
        self.processor = RetrievalProcessor(self.model, self.tokenizer, self.multi_token_kind,
                                            self.num_tokens_to_generate, self.add_context, self.model_name,
                                            self.whitespace_token)

    def _initialize_retriever(self):
        if self.multi_token_kind == MultiTokenKind.Natural:
            return PatchscopesRetriever(self.model, self.tokenizer)
        else:
            return ReverseLogitLensRetriever(self.model, self.tokenizer)

    def retrieve_words_in_dataset(self, number_of_examples_to_retrieve=2, max_length=1000):
        self.model.eval()
        results = []

        for text in tqdm(self.dataset['train']['text'][:number_of_examples_to_retrieve], self.model_name):
            tokenized_input = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=max_length).to(
                self.device)
            tokens = tokenized_input.input_ids[0]
            print(f'Processing text: {text}')
            i = 5
            while i < len(tokens):
                if self.multi_token_kind == MultiTokenKind.Natural:
                    j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_word(
                        tokens, i, device=self.device)
                elif self.multi_token_kind == MultiTokenKind.Typo:
                    j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_typo(
                        tokens, i, device=self.device)
                else:
                    j, word_tokens, word, context, tokenized_combined_text, combined_text, original_word = self.processor.get_next_full_word_separated(
                        tokens, i, device=self.device)

                if len(word_tokens) > 1:
                    with torch.no_grad():
                        outputs = self.model(**tokenized_combined_text, output_hidden_states=True)

                    hidden_states = outputs.hidden_states
                    for layer_idx, hidden_state in enumerate(hidden_states):
                        postfix_hidden_state = hidden_states[layer_idx][0, -1, :].unsqueeze(0)
                        retrieved_word_str = self.retriever.retrieve_word(postfix_hidden_state, layer_idx=layer_idx,
                                                                          num_tokens_to_generate=len(word_tokens))
                        results.append({
                            'text': combined_text,
                            'original_word': original_word,
                            'word': word,
                            'word_tokens': self.tokenizer.convert_ids_to_tokens(word_tokens),
                            'num_tokens': len(word_tokens),
                            'layer': layer_idx,
                            'retrieved_word_str': retrieved_word_str,
                            'context': "With Context" if self.add_context else "Without Context"
                        })
                else:
                    i = j
        return results


DEFAULT_MODEL = "meta-llama/Llama-3.1-8B"  # light default so the demo boots everywhere
DEVICE = (
    "cuda" if torch.cuda.is_available() else 'cpu'
)

@lru_cache(maxsize=4)
def get_model_and_tokenizer(model_name: str):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.bfloat16 ,
        output_hidden_states=True,
    ).to(DEVICE)
    model.eval()
    return model, tokenizer


def find_last_token_index(full_ids, word_ids):
    """Locate end position of word_ids inside full_ids (first match)."""
    for i in range(len(full_ids) - len(word_ids) + 1):
        if full_ids[i : i + len(word_ids)] == word_ids:
            return i + len(word_ids) - 1
    return None

@GPU  # this block runs on a job GPU
def analyse_word(model_name: str, word: str, patchscopes_template: str, context:str = ""):
    try:
        # text = context+ " " + word
        model, tokenizer = get_model_and_tokenizer(model_name)

        # Build extraction prompt (where hidden states will be collected)
        extraction_prompt ="X"

        # Identify last token position of the *word* inside the prompt IDs
        word_token_ids = tokenizer.encode(word, add_special_tokens=False)

        # Instantiate Patchscopes retriever
        patch_retriever = PatchscopesRetriever(
            model,
            tokenizer,
            extraction_prompt,
            patchscopes_template,
            prompt_target_placeholder="X",
        )

        # Run retrieval for the word across all layers (one pass)
        retrieved_words  = patch_retriever.get_hidden_states_and_retrieve_word(
            word,
            num_tokens_to_generate=len(tokenizer.tokenize(word)),
        )[0]

        # Build a table summarising which layers match
        records = []
        matches = 0
        for layer_idx, ret_word in enumerate(retrieved_words):
            match = ret_word.strip(" ") == word.strip(" ")
            if match:
                matches += 1
            records.append({"Layer": layer_idx, "Retrieved": ret_word, "Match?": "✓" if match else ""})

        df = pd.DataFrame(records)

        def _style(row):
            color = "background-color: lightgreen" if row["Match?"] else ""
            return [color] * len(row)

        html_table = df.style.apply(_style, axis=1).hide(axis="index").to_html(escape=False)

        sub_tokens = tokenizer.convert_ids_to_tokens(word_token_ids)
        top = (
            f"<p><b>Sub‑word tokens:</b> {' , '.join(sub_tokens)}</p>"
            f"<p><b>Total matched layers:</b> {matches} / {len(retrieved_words)}</p>"
        )
        return top + html_table
    except Exception as e:
        return f"<p style='color:red'>❌ Error: {str(e)}</p>"


# ----------------------------- GRADIO UI -------------------------------
with gr.Blocks(theme="soft") as demo:
    gr.Markdown(
        """# Tokens→Words Viewer\nInteractively inspect how hidden‑state patching (Patchscopes) reveals a word's detokenised representation across model layers."""
    )

    with gr.Row():
        model_name = gr.Dropdown(
            label="🤖 Model",
            choices=[DEFAULT_MODEL, "mistralai/Mistral-7B-v0.1", "meta-llama/Llama-2-7b-hf", "Qwen/Qwen2-7B"],
            value=DEFAULT_MODEL,
        )
    patchscopes_template = gr.Textbox(
        label="Patchscopes prompt (use X as placeholder)",
        value="repeat the following word X twice: 1)X 2)",
    )
    # context_box = gr.Textbox(label="context", value="")
    word_box = gr.Textbox(label="Word to test", value="interpretable")
    run_btn = gr.Button("Analyse")
    out_html = gr.HTML()

    run_btn.click(
        analyse_word,
        inputs=[model_name, word_box, patchscopes_template], #, context_box],
        outputs=out_html,
    )

if __name__ == "__main__":
    demo.launch()