driver / app.py
Guru-25's picture
new
a3ae3eb verified
raw
history blame
14.3 kB
import gradio as gr
import cv2
import numpy as np
import tempfile
import os
import time
from scripts.inference import GazePredictor
from utils.ear_utils import BlinkDetector
def smooth_values(history, current_value, window_size=5):
if current_value is not None:
history.append(current_value)
if len(history) > window_size:
history.pop(0)
return np.mean(history, axis=0) if isinstance(current_value, np.ndarray) and history else current_value if current_value is not None else 0
MODEL_PATH = os.path.join("models", "gaze_estimation_model.pth")
def analyze_video(input_video):
cap = cv2.VideoCapture(input_video)
gaze_predictor = GazePredictor(MODEL_PATH)
blink_detector = BlinkDetector()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4')
os.close(temp_fd)
out = None
GAZE_STABILITY_THRESHOLD = 0.5
TIME_THRESHOLD = 15
BLINK_RATE_THRESHOLD = 1
EYE_CLOSURE_THRESHOLD = 10
HEAD_STABILITY_THRESHOLD = 0.05
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count = 0
fps = cap.get(cv2.CAP_PROP_FPS) or 20
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if start_time == 0:
start_time = frame_count / fps
head_pose_gaze, gaze_h, gaze_v = gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v])
smoothed_gaze = smooth_values(gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame)
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
smoothed_head = smooth_values(head_history, None)
smoothed_ear = smooth_values(ear_history, None)
else:
smoothed_head = smooth_values(head_history, head_pose)
smoothed_ear = smooth_values(ear_history, ear)
if smoothed_ear >= blink_detector.EAR_THRESHOLD:
cv2.drawMarker(frame, left_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, right_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.putText(frame, f"Gaze H: {smoothed_gaze[0]:.2f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Gaze V: {smoothed_gaze[1]:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Head Pose: {smoothed_head:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"EAR: {smoothed_ear:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if len(gaze_history) > 1:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2))
if gaze_diff < GAZE_STABILITY_THRESHOLD:
if stable_gaze_time == 0:
stable_gaze_time = frame_count / fps
else:
stable_gaze_time = 0
if len(head_history) > 1 and head_pose is not None:
head_diff = abs(smoothed_head - head_history[-2])
if head_diff < HEAD_STABILITY_THRESHOLD:
if stable_head_time == 0:
stable_head_time = frame_count / fps
else:
stable_head_time = 0
if ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD:
if eye_closed_time == 0:
eye_closed_time = frame_count / fps
elif (frame_count / fps) - eye_closed_time > EYE_CLOSURE_THRESHOLD:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
else:
if eye_closed_time > 0 and (frame_count / fps) - eye_closed_time < 0.5:
blink_count += 1
eye_closed_time = 0
elapsed_minutes = ((frame_count / fps) - start_time) / 60 if start_time > 0 else 0
blink_rate = blink_count / elapsed_minutes if elapsed_minutes > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
unconscious_conditions = [
stable_gaze_time > 0 and (frame_count / fps) - stable_gaze_time > TIME_THRESHOLD,
blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes > 1,
eye_closed_time > 0 and (frame_count / fps) - eye_closed_time > EYE_CLOSURE_THRESHOLD,
stable_head_time > 0 and (frame_count / fps) - stable_head_time > TIME_THRESHOLD
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
is_unconscious = True
else:
is_unconscious = False
if out is None:
h, w = frame.shape[:2]
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
out.write(frame)
cap.release()
if out:
out.release()
return temp_path
def process_webcam(state):
"""Process webcam frames in real-time and update log output"""
if state is None:
# Initialize state
gaze_predictor = GazePredictor(MODEL_PATH)
blink_detector = BlinkDetector()
cap = cv2.VideoCapture(0)
if not cap.isOpened():
return None, "Error: Could not open webcam.", None
# Try to set webcam properties for better performance
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
GAZE_STABILITY_THRESHOLD = 0.5
TIME_THRESHOLD = 15
BLINK_RATE_THRESHOLD = 1
EYE_CLOSURE_THRESHOLD = 10
HEAD_STABILITY_THRESHOLD = 0.05
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = time.time()
is_unconscious = False
log_output = ""
state = {
"gaze_predictor": gaze_predictor,
"blink_detector": blink_detector,
"cap": cap,
"gaze_history": gaze_history,
"head_history": head_history,
"ear_history": ear_history,
"stable_gaze_time": stable_gaze_time,
"stable_head_time": stable_head_time,
"eye_closed_time": eye_closed_time,
"blink_count": blink_count,
"start_time": start_time,
"is_unconscious": is_unconscious,
"GAZE_STABILITY_THRESHOLD": GAZE_STABILITY_THRESHOLD,
"TIME_THRESHOLD": TIME_THRESHOLD,
"BLINK_RATE_THRESHOLD": BLINK_RATE_THRESHOLD,
"EYE_CLOSURE_THRESHOLD": EYE_CLOSURE_THRESHOLD,
"HEAD_STABILITY_THRESHOLD": HEAD_STABILITY_THRESHOLD,
"log_output": log_output
}
return state, "Initializing webcam...", None
# Extract state variables
cap = state["cap"]
gaze_predictor = state["gaze_predictor"]
blink_detector = state["blink_detector"]
gaze_history = state["gaze_history"]
head_history = state["head_history"]
ear_history = state["ear_history"]
log_output = state["log_output"]
# Capture frame
ret, frame = cap.read()
if not ret or frame is None:
# Try to reinitialize the camera if frame capture fails
cap.release()
cap = cv2.VideoCapture(0)
if not cap.isOpened():
return state, log_output + "\nError: Could not read from webcam.", None
state["cap"] = cap
ret, frame = cap.read()
if not ret or frame is None:
return state, log_output + "\nError: Failed to capture frame after reinitialization.", None
# Process frame
try:
head_pose_gaze, gaze_h, gaze_v = gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v])
smoothed_gaze = smooth_values(gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame)
# Update display and logs
current_time = time.time()
logs = []
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
smoothed_head = smooth_values(head_history, None)
smoothed_ear = smooth_values(ear_history, None)
logs.append("No face detected")
else:
smoothed_head = smooth_values(head_history, head_pose)
smoothed_ear = smooth_values(ear_history, ear)
if smoothed_ear >= blink_detector.EAR_THRESHOLD:
cv2.drawMarker(frame, left_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, right_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
# Add metrics to frame
cv2.putText(frame, f"Gaze H: {smoothed_gaze[0]:.2f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Gaze V: {smoothed_gaze[1]:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Head Pose: {smoothed_head:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"EAR: {smoothed_ear:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Check for gaze stability
if len(gaze_history) > 1:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2))
if gaze_diff < state["GAZE_STABILITY_THRESHOLD"]:
if state["stable_gaze_time"] == 0:
state["stable_gaze_time"] = current_time
else:
state["stable_gaze_time"] = 0
# Check for head stability
if len(head_history) > 1 and head_pose is not None:
head_diff = abs(smoothed_head - head_history[-2])
if head_diff < state["HEAD_STABILITY_THRESHOLD"]:
if state["stable_head_time"] == 0:
state["stable_head_time"] = current_time
else:
state["stable_head_time"] = 0
# Check for eye closure
if ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD:
if state["eye_closed_time"] == 0:
state["eye_closed_time"] = current_time
elif current_time - state["eye_closed_time"] > state["EYE_CLOSURE_THRESHOLD"]:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
logs.append("Eyes have been closed for an extended period")
else:
if state["eye_closed_time"] > 0 and current_time - state["eye_closed_time"] < 0.5:
state["blink_count"] += 1
logs.append("Blink detected")
state["eye_closed_time"] = 0
elapsed_seconds = current_time - state["start_time"]
elapsed_minutes = elapsed_seconds / 60
blink_rate = state["blink_count"] / elapsed_minutes if elapsed_minutes > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
logs.append(f"Blink rate: {blink_rate:.1f}/min")
# Check for unconscious state
unconscious_conditions = [
state["stable_gaze_time"] > 0 and current_time - state["stable_gaze_time"] > state["TIME_THRESHOLD"],
blink_rate < state["BLINK_RATE_THRESHOLD"] and elapsed_minutes > 1,
state["eye_closed_time"] > 0 and current_time - state["eye_closed_time"] > state["EYE_CLOSURE_THRESHOLD"],
state["stable_head_time"] > 0 and current_time - state["stable_head_time"] > state["TIME_THRESHOLD"]
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
state["is_unconscious"] = True
logs.append("WARNING: Possible unconscious state detected!")
else:
state["is_unconscious"] = False
# Update log output with latest information
logs.append(f"Gaze: ({smoothed_gaze[0]:.2f}, {smoothed_gaze[1]:.2f}) | Head: {smoothed_head:.2f} | EAR: {smoothed_ear:.2f}")
log_text = "\n".join(logs)
# Keep log_output to a reasonable size
log_lines = log_output.split("\n") if log_output else []
log_lines.append(log_text)
if len(log_lines) > 20: # Keep only last 20 entries
log_lines = log_lines[-20:]
state["log_output"] = "\n".join(log_lines)
# Convert from BGR to RGB for Gradio
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return state, state["log_output"], frame_rgb
except Exception as e:
error_msg = f"Error processing frame: {str(e)}"
return state, log_output + "\n" + error_msg, None
def create_webcam_interface():
log_output = gr.Textbox(label="Gaze Tracking Log", lines=10)
processed_frame = gr.Image(label="Processed Frame")
webcam_demo = gr.Interface(
fn=process_webcam,
inputs=[gr.State()],
outputs=[gr.State(), log_output, processed_frame],
live=True,
title="Real-time Gaze Tracking"
)
return webcam_demo
def create_video_interface():
video_demo = gr.Interface(
fn=analyze_video,
inputs=gr.Video(),
outputs=gr.Video(),
title="Video Analysis",
description="Upload a video to analyze gaze and drowsiness."
)
return video_demo
# Create a tabbed interface without the unsupported 'description' parameter
demo = gr.TabbedInterface(
[create_video_interface(), create_webcam_interface()],
["Video Upload", "Webcam"],
title="Gaze Tracker"
)
if __name__ == "__main__":
demo.launch()