File size: 14,275 Bytes
b8b61aa 4aecca0 b8b61aa 8f43a66 4aecca0 8f43a66 4aecca0 a3ae3eb 4aecca0 8f43a66 4aecca0 8f43a66 4aecca0 a3ae3eb 4aecca0 8f43a66 4aecca0 a3ae3eb 4aecca0 a3ae3eb 4aecca0 a3ae3eb 4aecca0 a3ae3eb 4aecca0 8f43a66 4aecca0 8f43a66 4aecca0 8f43a66 b8b61aa 4aecca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
import cv2
import numpy as np
import tempfile
import os
import time
from scripts.inference import GazePredictor
from utils.ear_utils import BlinkDetector
def smooth_values(history, current_value, window_size=5):
if current_value is not None:
history.append(current_value)
if len(history) > window_size:
history.pop(0)
return np.mean(history, axis=0) if isinstance(current_value, np.ndarray) and history else current_value if current_value is not None else 0
MODEL_PATH = os.path.join("models", "gaze_estimation_model.pth")
def analyze_video(input_video):
cap = cv2.VideoCapture(input_video)
gaze_predictor = GazePredictor(MODEL_PATH)
blink_detector = BlinkDetector()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
temp_fd, temp_path = tempfile.mkstemp(suffix='.mp4')
os.close(temp_fd)
out = None
GAZE_STABILITY_THRESHOLD = 0.5
TIME_THRESHOLD = 15
BLINK_RATE_THRESHOLD = 1
EYE_CLOSURE_THRESHOLD = 10
HEAD_STABILITY_THRESHOLD = 0.05
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = 0
is_unconscious = False
frame_count = 0
fps = cap.get(cv2.CAP_PROP_FPS) or 20
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if start_time == 0:
start_time = frame_count / fps
head_pose_gaze, gaze_h, gaze_v = gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v])
smoothed_gaze = smooth_values(gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame)
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
smoothed_head = smooth_values(head_history, None)
smoothed_ear = smooth_values(ear_history, None)
else:
smoothed_head = smooth_values(head_history, head_pose)
smoothed_ear = smooth_values(ear_history, ear)
if smoothed_ear >= blink_detector.EAR_THRESHOLD:
cv2.drawMarker(frame, left_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, right_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.putText(frame, f"Gaze H: {smoothed_gaze[0]:.2f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Gaze V: {smoothed_gaze[1]:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Head Pose: {smoothed_head:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"EAR: {smoothed_ear:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
if len(gaze_history) > 1:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2))
if gaze_diff < GAZE_STABILITY_THRESHOLD:
if stable_gaze_time == 0:
stable_gaze_time = frame_count / fps
else:
stable_gaze_time = 0
if len(head_history) > 1 and head_pose is not None:
head_diff = abs(smoothed_head - head_history[-2])
if head_diff < HEAD_STABILITY_THRESHOLD:
if stable_head_time == 0:
stable_head_time = frame_count / fps
else:
stable_head_time = 0
if ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD:
if eye_closed_time == 0:
eye_closed_time = frame_count / fps
elif (frame_count / fps) - eye_closed_time > EYE_CLOSURE_THRESHOLD:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
else:
if eye_closed_time > 0 and (frame_count / fps) - eye_closed_time < 0.5:
blink_count += 1
eye_closed_time = 0
elapsed_minutes = ((frame_count / fps) - start_time) / 60 if start_time > 0 else 0
blink_rate = blink_count / elapsed_minutes if elapsed_minutes > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
unconscious_conditions = [
stable_gaze_time > 0 and (frame_count / fps) - stable_gaze_time > TIME_THRESHOLD,
blink_rate < BLINK_RATE_THRESHOLD and elapsed_minutes > 1,
eye_closed_time > 0 and (frame_count / fps) - eye_closed_time > EYE_CLOSURE_THRESHOLD,
stable_head_time > 0 and (frame_count / fps) - stable_head_time > TIME_THRESHOLD
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
is_unconscious = True
else:
is_unconscious = False
if out is None:
h, w = frame.shape[:2]
out = cv2.VideoWriter(temp_path, fourcc, fps, (w, h))
out.write(frame)
cap.release()
if out:
out.release()
return temp_path
def process_webcam(state):
"""Process webcam frames in real-time and update log output"""
if state is None:
# Initialize state
gaze_predictor = GazePredictor(MODEL_PATH)
blink_detector = BlinkDetector()
cap = cv2.VideoCapture(0)
if not cap.isOpened():
return None, "Error: Could not open webcam.", None
# Try to set webcam properties for better performance
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
GAZE_STABILITY_THRESHOLD = 0.5
TIME_THRESHOLD = 15
BLINK_RATE_THRESHOLD = 1
EYE_CLOSURE_THRESHOLD = 10
HEAD_STABILITY_THRESHOLD = 0.05
gaze_history = []
head_history = []
ear_history = []
stable_gaze_time = 0
stable_head_time = 0
eye_closed_time = 0
blink_count = 0
start_time = time.time()
is_unconscious = False
log_output = ""
state = {
"gaze_predictor": gaze_predictor,
"blink_detector": blink_detector,
"cap": cap,
"gaze_history": gaze_history,
"head_history": head_history,
"ear_history": ear_history,
"stable_gaze_time": stable_gaze_time,
"stable_head_time": stable_head_time,
"eye_closed_time": eye_closed_time,
"blink_count": blink_count,
"start_time": start_time,
"is_unconscious": is_unconscious,
"GAZE_STABILITY_THRESHOLD": GAZE_STABILITY_THRESHOLD,
"TIME_THRESHOLD": TIME_THRESHOLD,
"BLINK_RATE_THRESHOLD": BLINK_RATE_THRESHOLD,
"EYE_CLOSURE_THRESHOLD": EYE_CLOSURE_THRESHOLD,
"HEAD_STABILITY_THRESHOLD": HEAD_STABILITY_THRESHOLD,
"log_output": log_output
}
return state, "Initializing webcam...", None
# Extract state variables
cap = state["cap"]
gaze_predictor = state["gaze_predictor"]
blink_detector = state["blink_detector"]
gaze_history = state["gaze_history"]
head_history = state["head_history"]
ear_history = state["ear_history"]
log_output = state["log_output"]
# Capture frame
ret, frame = cap.read()
if not ret or frame is None:
# Try to reinitialize the camera if frame capture fails
cap.release()
cap = cv2.VideoCapture(0)
if not cap.isOpened():
return state, log_output + "\nError: Could not read from webcam.", None
state["cap"] = cap
ret, frame = cap.read()
if not ret or frame is None:
return state, log_output + "\nError: Failed to capture frame after reinitialization.", None
# Process frame
try:
head_pose_gaze, gaze_h, gaze_v = gaze_predictor.predict_gaze(frame)
current_gaze = np.array([gaze_h, gaze_v])
smoothed_gaze = smooth_values(gaze_history, current_gaze)
ear, left_eye, right_eye, head_pose, left_iris, right_iris = blink_detector.detect_blinks(frame)
# Update display and logs
current_time = time.time()
logs = []
if ear is None:
cv2.putText(frame, "No face detected", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
smoothed_head = smooth_values(head_history, None)
smoothed_ear = smooth_values(ear_history, None)
logs.append("No face detected")
else:
smoothed_head = smooth_values(head_history, head_pose)
smoothed_ear = smooth_values(ear_history, ear)
if smoothed_ear >= blink_detector.EAR_THRESHOLD:
cv2.drawMarker(frame, left_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
cv2.drawMarker(frame, right_iris, (0, 255, 0), markerType=cv2.MARKER_CROSS, markerSize=10, thickness=2)
# Add metrics to frame
cv2.putText(frame, f"Gaze H: {smoothed_gaze[0]:.2f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Gaze V: {smoothed_gaze[1]:.2f}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"Head Pose: {smoothed_head:.2f}", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(frame, f"EAR: {smoothed_ear:.2f}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Check for gaze stability
if len(gaze_history) > 1:
gaze_diff = np.sqrt(np.sum((smoothed_gaze - gaze_history[-2])**2))
if gaze_diff < state["GAZE_STABILITY_THRESHOLD"]:
if state["stable_gaze_time"] == 0:
state["stable_gaze_time"] = current_time
else:
state["stable_gaze_time"] = 0
# Check for head stability
if len(head_history) > 1 and head_pose is not None:
head_diff = abs(smoothed_head - head_history[-2])
if head_diff < state["HEAD_STABILITY_THRESHOLD"]:
if state["stable_head_time"] == 0:
state["stable_head_time"] = current_time
else:
state["stable_head_time"] = 0
# Check for eye closure
if ear is not None and smoothed_ear < blink_detector.EAR_THRESHOLD:
if state["eye_closed_time"] == 0:
state["eye_closed_time"] = current_time
elif current_time - state["eye_closed_time"] > state["EYE_CLOSURE_THRESHOLD"]:
cv2.putText(frame, "Eyes Closed", (10, 210), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
logs.append("Eyes have been closed for an extended period")
else:
if state["eye_closed_time"] > 0 and current_time - state["eye_closed_time"] < 0.5:
state["blink_count"] += 1
logs.append("Blink detected")
state["eye_closed_time"] = 0
elapsed_seconds = current_time - state["start_time"]
elapsed_minutes = elapsed_seconds / 60
blink_rate = state["blink_count"] / elapsed_minutes if elapsed_minutes > 0 else 0
cv2.putText(frame, f"Blink Rate: {blink_rate:.1f}/min", (10, 240), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
logs.append(f"Blink rate: {blink_rate:.1f}/min")
# Check for unconscious state
unconscious_conditions = [
state["stable_gaze_time"] > 0 and current_time - state["stable_gaze_time"] > state["TIME_THRESHOLD"],
blink_rate < state["BLINK_RATE_THRESHOLD"] and elapsed_minutes > 1,
state["eye_closed_time"] > 0 and current_time - state["eye_closed_time"] > state["EYE_CLOSURE_THRESHOLD"],
state["stable_head_time"] > 0 and current_time - state["stable_head_time"] > state["TIME_THRESHOLD"]
]
if sum(unconscious_conditions) >= 2:
cv2.putText(frame, "Unconscious Detected", (10, 270), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
state["is_unconscious"] = True
logs.append("WARNING: Possible unconscious state detected!")
else:
state["is_unconscious"] = False
# Update log output with latest information
logs.append(f"Gaze: ({smoothed_gaze[0]:.2f}, {smoothed_gaze[1]:.2f}) | Head: {smoothed_head:.2f} | EAR: {smoothed_ear:.2f}")
log_text = "\n".join(logs)
# Keep log_output to a reasonable size
log_lines = log_output.split("\n") if log_output else []
log_lines.append(log_text)
if len(log_lines) > 20: # Keep only last 20 entries
log_lines = log_lines[-20:]
state["log_output"] = "\n".join(log_lines)
# Convert from BGR to RGB for Gradio
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return state, state["log_output"], frame_rgb
except Exception as e:
error_msg = f"Error processing frame: {str(e)}"
return state, log_output + "\n" + error_msg, None
def create_webcam_interface():
log_output = gr.Textbox(label="Gaze Tracking Log", lines=10)
processed_frame = gr.Image(label="Processed Frame")
webcam_demo = gr.Interface(
fn=process_webcam,
inputs=[gr.State()],
outputs=[gr.State(), log_output, processed_frame],
live=True,
title="Real-time Gaze Tracking"
)
return webcam_demo
def create_video_interface():
video_demo = gr.Interface(
fn=analyze_video,
inputs=gr.Video(),
outputs=gr.Video(),
title="Video Analysis",
description="Upload a video to analyze gaze and drowsiness."
)
return video_demo
# Create a tabbed interface without the unsupported 'description' parameter
demo = gr.TabbedInterface(
[create_video_interface(), create_webcam_interface()],
["Video Upload", "Webcam"],
title="Gaze Tracker"
)
if __name__ == "__main__":
demo.launch()
|