Spaces:
Sleeping
Sleeping
import os, sys, argparse, tempfile, shutil, base64, io | |
from flask import Flask, request, render_template_string | |
from werkzeug.utils import secure_filename | |
from torch.utils.data import DataLoader | |
import selfies | |
from rdkit import Chem | |
import torch | |
import matplotlib | |
matplotlib.use("Agg") | |
import matplotlib.pyplot as plt | |
from matplotlib import cm | |
from typing import Optional | |
from utils.drug_tokenizer import DrugTokenizer | |
from transformers import EsmForMaskedLM, EsmTokenizer, AutoModel | |
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI | |
from utils.foldseek_util import get_struc_seq | |
# โโโโโ Biopython fallback โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
from Bio.PDB import PDBParser, MMCIFParser | |
from Bio.Data import IUPACData | |
three2one = {k.upper(): v for k, v in IUPACData.protein_letters_3to1.items()} | |
three2one.update({"SEC": "C", "PYL": "K"}) | |
def simple_seq_from_structure(path: str) -> str: | |
parser = MMCIFParser(QUIET=True) if path.endswith(".cif") else PDBParser(QUIET=True) | |
chain = next(parser.get_structure("P", path).get_chains()) | |
return "".join(three2one.get(res.get_resname().upper(), "X") for res in chain) | |
# โโโโโ global paths / args โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
FOLDSEEK_BIN = shutil.which("foldseek") | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
sys.path.append("..") | |
def parse_config(): | |
p = argparse.ArgumentParser() | |
p.add_argument("-f") | |
p.add_argument("--prot_encoder_path", default="westlake-repl/SaProt_650M_AF2") | |
p.add_argument("--drug_encoder_path", default="HUBioDataLab/SELFormer") | |
p.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}") | |
p.add_argument("--group_size", type=int, default=1) | |
p.add_argument("--lr", type=float, default=1e-4) | |
p.add_argument("--fusion", default="CAN") | |
p.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu") | |
p.add_argument("--save_path_prefix", default="save_model_ckp/") | |
p.add_argument("--dataset", default="BindingDB", | |
help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')") | |
return p.parse_args() | |
args = parse_config() | |
DEVICE = args.device | |
# โโโโโ tokenisers & encoders โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path) | |
prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path) | |
drug_tokenizer = DrugTokenizer() # SELFIES | |
drug_model = AutoModel.from_pretrained(args.drug_encoder_path) | |
encoding = Pre_encoded(prot_model, drug_model, args).to(DEVICE) | |
# โโโ collate fn โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
def collate_fn(batch): | |
query1, query2, scores = zip(*batch) | |
query_encodings1 = prot_tokenizer.batch_encode_plus( | |
list(query1), | |
max_length=512, | |
padding="max_length", | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
query_encodings2 = drug_tokenizer.batch_encode_plus( | |
list(query2), | |
max_length=512, | |
padding="max_length", | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
scores = torch.tensor(list(scores)) | |
attention_mask1 = query_encodings1["attention_mask"].bool() | |
attention_mask2 = query_encodings2["attention_mask"].bool() | |
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores | |
# def collate_fn_batch_encoding(batch): | |
def smiles_to_selfies(smiles: str) -> Optional[str]: | |
try: | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return None | |
selfies_str = selfies.encoder(smiles) | |
return selfies_str | |
except Exception: | |
return None | |
# โโโโโ single-case embedding โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
def get_case_feature(model, loader): | |
model.eval() | |
with torch.no_grad(): | |
for p_ids, p_mask, d_ids, d_mask, _ in loader: | |
p_ids, p_mask = p_ids.to(DEVICE), p_mask.to(DEVICE) | |
d_ids, d_mask = d_ids.to(DEVICE), d_mask.to(DEVICE) | |
p_emb, d_emb = model.encoding(p_ids, p_mask, d_ids, d_mask) | |
return [(p_emb.cpu(), d_emb.cpu(), | |
p_ids.cpu(), d_ids.cpu(), | |
p_mask.cpu(), d_mask.cpu(), None)] | |
# โโโโโ helper๏ผ่ฟๆปค็นๆฎ token โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
def clean_tokens(ids, tokenizer): | |
toks = tokenizer.convert_ids_to_tokens(ids.tolist()) | |
return [t for t in toks if t not in tokenizer.all_special_tokens] | |
# โโโโโ visualisation โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
def visualize_attention(model, feats, drug_idx: Optional[int] = None) -> str: | |
""" | |
Render a Protein โ Drug cross-attention heat-map and, optionally, a | |
Top-20 protein-residue table for a chosen drug-token index. | |
The token index shown on the x-axis (and accepted via *drug_idx*) is **the | |
position of that token in the *original* drug sequence**, *after* the | |
tokeniser but *before* any pruning or truncation (1-based in the labels, | |
0-based for the function argument). | |
Returns | |
------- | |
html : str | |
Base64-embedded PNG heat-map (+ optional HTML table). | |
""" | |
model.eval() | |
with torch.no_grad(): | |
# โโ unpack single-case tensors โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
p_emb, d_emb, p_ids, d_ids, p_mask, d_mask, _ = feats[0] | |
p_emb, d_emb = p_emb.to(DEVICE), d_emb.to(DEVICE) | |
p_mask, d_mask = p_mask.to(DEVICE), d_mask.to(DEVICE) | |
# โโ forward pass: Protein โ Drug attention (B, n_p, n_d) โโโโโโโโโโโโโโโ | |
_, att_pd = model(p_emb, d_emb, p_mask, d_mask) | |
attn = att_pd.squeeze(0).cpu() # (n_p, n_d) | |
# โโ decode tokens (skip special symbols) โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
def clean_ids(ids, tokenizer): | |
toks = tokenizer.convert_ids_to_tokens(ids.tolist()) | |
return [t for t in toks if t not in tokenizer.all_special_tokens] | |
# โโ decode full sequences + record 1-based indices โโโโโโโโโโโโโโโโโโ | |
p_tokens_full = clean_ids(p_ids[0], prot_tokenizer) | |
p_indices_full = list(range(1, len(p_tokens_full) + 1)) | |
d_tokens_full = clean_ids(d_ids[0], drug_tokenizer) | |
d_indices_full = list(range(1, len(d_tokens_full) + 1)) | |
# โโ safety cut-off to match attn mat size โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
p_tokens = p_tokens_full[: attn.size(0)] | |
p_indices_full = p_indices_full[: attn.size(0)] | |
d_tokens_full = d_tokens_full[: attn.size(1)] | |
d_indices_full = d_indices_full[: attn.size(1)] | |
attn = attn[: len(p_tokens_full), : len(d_tokens_full)] | |
# โโ adaptive sparsity pruning โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
thr = attn.max().item() * 0.05 | |
row_keep = (attn.max(dim=1).values > thr) | |
col_keep = (attn.max(dim=0).values > thr) | |
if row_keep.sum() < 3: | |
row_keep[:] = True | |
if col_keep.sum() < 3: | |
col_keep[:] = True | |
attn = attn[row_keep][:, col_keep] | |
p_tokens = [tok for keep, tok in zip(row_keep, p_tokens) if keep] | |
p_indices = [idx for keep, idx in zip(row_keep, p_indices_full) if keep] | |
d_tokens = [tok for keep, tok in zip(col_keep, d_tokens_full) if keep] | |
d_indices = [idx for keep, idx in zip(col_keep, d_indices_full) if keep] | |
# โโ cap column count at 150 for readability โโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
if attn.size(1) > 150: | |
topc = torch.topk(attn.sum(0), k=150).indices | |
attn = attn[:, topc] | |
d_tokens = [d_tokens [i] for i in topc] | |
d_indices = [d_indices[i] for i in topc] | |
# โโ draw heat-map โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
x_labels = [f"{idx}:{tok}" for idx, tok in zip(d_indices, d_tokens)] | |
y_labels = [f"{idx}:{tok}" for idx, tok in zip(p_indices, p_tokens)] | |
fig_w = min(22, max(8, len(x_labels) * 0.6)) # ~0.6โณ per column | |
fig_h = min(24, max(6, len(p_tokens) * 0.8)) | |
fig, ax = plt.subplots(figsize=(fig_w, fig_h)) | |
im = ax.imshow(attn.numpy(), aspect="auto", | |
cmap=cm.viridis, interpolation="nearest") | |
ax.set_title("Protein โ Drug Attention", pad=8, fontsize=10) | |
ax.set_xticks(range(len(x_labels))) | |
ax.set_xticklabels(x_labels, rotation=90, fontsize=8, | |
ha="center", va="center") | |
ax.tick_params(axis="x", top=True, bottom=False, | |
labeltop=True, labelbottom=False, pad=27) | |
ax.set_yticks(range(len(y_labels))) | |
ax.set_yticklabels(y_labels, fontsize=7) | |
ax.tick_params(axis="y", top=True, bottom=False, | |
labeltop=True, labelbottom=False, | |
pad=10) | |
fig.colorbar(im, fraction=0.026, pad=0.01) | |
fig.tight_layout() | |
buf = io.BytesIO() | |
fig.savefig(buf, format="png", dpi=140) | |
plt.close(fig) | |
html = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" />' | |
# โโโโโโโโโโโโโโโโโโโโโ ็ๆ Top-20 ่กจ๏ผ่ฅ้่ฆ๏ผ โโโโโโโโโโโโโโโโโโโโโ | |
table_html = "" # ๅ ่ฎพ็ฉบไธฒ๏ผๆนไพฟๅ้ข็ปไธๆผๆฅ | |
if drug_idx is not None: | |
# map original 0-based drug_idx โ current column position | |
if (drug_idx + 1) in d_indices: | |
col_pos = d_indices.index(drug_idx + 1) | |
elif 0 <= drug_idx < len(d_tokens): | |
col_pos = drug_idx | |
else: | |
col_pos = None | |
if col_pos is not None: | |
col_vec = attn[:, col_pos] | |
topk = torch.topk(col_vec, k=min(20, len(col_vec))).indices.tolist() | |
rank_hdr = "".join(f"<th>{r+1}</th>" for r in range(len(topk))) | |
res_row = "".join(f"<td>{p_tokens[i]}</td>" for i in topk) | |
pos_row = "".join(f"<td>{p_indices[i]}</td>"for i in topk) | |
drug_tok_text = d_tokens[col_pos] | |
orig_idx = d_indices[col_pos] | |
table_html = ( | |
f"<h4 style='margin-bottom:6px'>" | |
f"Drug token #{orig_idx} <code>{drug_tok_text}</code> " | |
f"โ Top-20 Protein residues</h4>" | |
"<table class='tg' style='margin-bottom:8px'>" | |
f"<tr><th>Rank</th>{rank_hdr}</tr>" | |
f"<tr><td>Residue</td>{res_row}</tr>" | |
f"<tr><td>Position</td>{pos_row}</tr>" | |
"</table>") | |
# โโโโโโโโโโโโโโโโโโ ็ๆๅฏๆพๅคง + ๅฏไธ่ฝฝ็็ญๅพ โโโโโโโโโโโโโโโโโโโโ | |
buf_png = io.BytesIO() | |
fig.savefig(buf_png, format="png", dpi=140) # ้ข่ง๏ผๅ ๆ ๏ผ | |
buf_png.seek(0) | |
buf_pdf = io.BytesIO() | |
fig.savefig(buf_pdf, format="pdf") # ้ซๆธ ไธ่ฝฝ๏ผ็ข้๏ผ | |
buf_pdf.seek(0) | |
plt.close(fig) | |
png_b64 = base64.b64encode(buf_png.getvalue()).decode() | |
pdf_b64 = base64.b64encode(buf_pdf.getvalue()).decode() | |
html_heat = ( | |
f"<a href='data:image/png;base64,{png_b64}' target='_blank' " | |
f"title='Click to enlarge'>" | |
f"<img src='data:image/png;base64,{png_b64}' " | |
f"style='max-width:100%;height:auto;cursor:zoom-in' /></a>" | |
f"<div style='margin-top:6px'>" | |
f"<a href='data:application/pdf;base64,{pdf_b64}' " | |
f"download='attention_heatmap.pdf'>Download PDF</a></div>" | |
) | |
# โโโโโโโโโโโโโโโโโโโโโโโโโ ่ฟๅๆ็ป HTML โโโโโโโโโโโโโโโโโโโโโโโโโ | |
return table_html + html_heat | |
# โโโโโ Flask app โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
app = Flask(__name__) | |
def index(): | |
protein_seq = drug_seq = structure_seq = ""; result_html = None | |
tmp_structure_path = ""; drug_idx = None | |
if request.method == "POST": | |
drug_idx_raw = request.form.get("drug_idx", "") | |
drug_idx = int(drug_idx_raw)-1 if drug_idx_raw.isdigit() else None | |
struct = request.files.get("structure_file") | |
if struct and struct.filename: | |
path = os.path.join(tempfile.gettempdir(), secure_filename(struct.filename)) | |
struct.save(path); tmp_structure_path = path | |
else: | |
tmp_structure_path = request.form.get("tmp_structure_path", "") | |
if "clear" in request.form: | |
protein_seq = drug_seq = structure_seq = ""; tmp_structure_path = "" | |
elif "confirm_structure" in request.form and tmp_structure_path: | |
try: | |
parsed = get_struc_seq(FOLDSEEK_BIN, tmp_structure_path, None, plddt_mask=False) | |
chain = list(parsed.keys())[0]; _, _, structure_seq = parsed[chain] | |
except Exception: | |
structure_seq = simple_seq_from_structure(tmp_structure_path) | |
protein_seq = structure_seq | |
drug_input = request.form.get("drug_sequence", "") | |
# Heuristically check if input is SMILES (not starting with [) and convert | |
if not drug_input.strip().startswith("["): | |
converted = smiles_to_selfies(drug_input.strip()) | |
if converted: | |
drug_seq = converted | |
else: | |
drug_seq = "" | |
result_html = "<p style='color:red'><strong>Failed to convert SMILES to SELFIES. Please check the input string.</strong></p>" | |
else: | |
drug_seq = drug_input | |
elif "Inference" in request.form: | |
protein_seq = request.form.get("protein_sequence", "") | |
drug_seq = request.form.get("drug_sequence", "") | |
if protein_seq and drug_seq: | |
loader = DataLoader([(protein_seq, drug_seq, 1)], batch_size=1, | |
collate_fn=collate_fn) | |
feats = get_case_feature(encoding, loader) | |
model = FusionDTI(446, 768, args).to(DEVICE) | |
ckpt = os.path.join(f"{args.save_path_prefix}{args.dataset}_{args.fusion}", | |
"best_model.ckpt") | |
if os.path.isfile(ckpt): | |
model.load_state_dict(torch.load(ckpt, map_location=DEVICE)) | |
result_html = visualize_attention(model, feats, drug_idx) | |
return render_template_string( | |
# โโโโโโโโโโโโโ HTML (ๅ UI + ๆฐ่พๅ ฅๆก) โโโโโโโโโโโโโ | |
""" | |
<!doctype html> | |
<html lang="en"><head><meta charset="utf-8"><title>FusionDTI </title> | |
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&family=Poppins:wght@500;600&display=swap" rel="stylesheet"> | |
<style> | |
:root{--bg:#f3f4f6;--card:#fff;--primary:#6366f1;--primary-dark:#4f46e5;--text:#111827;--border:#e5e7eb;} | |
*{box-sizing:border-box;margin:0;padding:0} | |
body{background:var(--bg);color:var(--text);font-family:Inter,system-ui,Arial,sans-serif;line-height:1.5;padding:32px 12px;} | |
h1{font-family:Poppins,Inter,sans-serif;font-weight:600;font-size:1.7rem;text-align:center;margin-bottom:28px;letter-spacing:-.2px;} | |
.card{max-width:1000px;margin:0 auto;background:var(--card);border:1px solid var(--border); | |
border-radius:12px;box-shadow:0 2px 6px rgba(0,0,0,.05);padding:32px 36px;} | |
label{font-weight:500;margin-bottom:6px;display:block} | |
textarea,input[type=file]{width:100%;font-size:.9rem;font-family:monospace;padding:10px 12px; | |
border:1px solid var(--border);border-radius:8px;background:#fff;resize:vertical;} | |
textarea{min-height:90px} | |
.btn{appearance:none;border:none;cursor:pointer;padding:12px 22px;border-radius:8px;font-weight:500; | |
font-family:Inter,sans-serif;transition:all .18s ease;color:#fff;} | |
.btn-primary{background:var(--primary)}.btn-primary:hover{background:var(--primary-dark)} | |
.btn-neutral{background:#9ca3af;}.btn-neutral:hover{background:#6b7280} | |
.grid{display:grid;gap:22px}.grid-2{grid-template-columns:1fr 1fr} | |
.vis-box{margin-top:28px;border:1px solid var(--border);border-radius:10px;overflow:auto;max-height:72vh;} | |
pre{white-space:pre-wrap;word-break:break-all;font-family:monospace;margin-top:8px} | |
/* โโ tidy table for Top-20 list โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ */ | |
table.tg{border-collapse:collapse;margin-top:4px;font-size:0.83rem} | |
table.tg th,table.tg td{border:1px solid var(--border);padding:6px 8px;text-align:left} | |
table.tg th{background:var(--bg);font-weight:600} | |
</style> | |
</head> | |
<body> | |
<h1> Token-level Visualiser for Drug-Target Interaction</h1> | |
<!-- โโโโโโโโโโโโโ Project Links (larger + spaced) โโโโโโโโโโโโโ --> | |
<div style="margin-top:24px; text-align:center;"> | |
<a href="https://zhaohanm.github.io/FusionDTI.github.io/" target="_blank" | |
style="display:inline-block;margin:8px 18px;padding:10px 20px; | |
background:linear-gradient(to right,#10b981,#059669);color:white; | |
font-weight:600;border-radius:8px;font-size:0.9rem; | |
font-family:Inter,sans-serif;text-decoration:none; | |
box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;" | |
onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'"> | |
๐ Project Page | |
</a> | |
<a href="https://arxiv.org/abs/2406.01651" target="_blank" | |
style="display:inline-block;margin:8px 18px;padding:10px 20px; | |
background:linear-gradient(to right,#ef4444,#dc2626);color:white; | |
font-weight:600;border-radius:8px;font-size:0.9rem; | |
font-family:Inter,sans-serif;text-decoration:none; | |
box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;" | |
onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'"> | |
๐ ArXiv: 2406.01651 | |
</a> | |
<a href="https://github.com/ZhaohanM/FusionDTI" target="_blank" | |
style="display:inline-block;margin:8px 18px;padding:10px 20px; | |
background:linear-gradient(to right,#3b82f6,#2563eb);color:white; | |
font-weight:600;border-radius:8px;font-size:0.9rem; | |
font-family:Inter,sans-serif;text-decoration:none; | |
box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;" | |
onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'"> | |
๐ป GitHub Repo | |
</a> | |
</div> | |
<!-- โโโโโโโโโโโโโ Guidelines for Use โโโโโโโโโโโโโ --> | |
<div class="card" style="margin-bottom:24px"> | |
<h2 style="font-size:1.2rem;margin-bottom:14px">Guidelines for Use</h2> | |
<ul style="margin-left:18px;line-height:1.55;list-style:decimal;"> | |
<li><strong>Convert protein structure into a structure-aware sequence:</strong> | |
Upload a <code>.pdb</code> or <code>.cif</code> file. A structure-aware | |
sequence will be generated using | |
<a href="https://github.com/steineggerlab/foldseek" target="_blank">Foldseek</a>, | |
based on 3D structures from | |
<a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold DB</a> or the | |
<a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a>.</li> | |
<li><strong>If you only have an amino acid sequence or a UniProt ID,</strong> | |
you must first visit the | |
<a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a> | |
or <a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold DB</a> | |
to search and download the corresponding <code>.cif</code> or <code>.pdb</code> file.</li> | |
<li><strong>Drug input supports both SELFIES and SMILES:</strong><br> | |
You can enter a SELFIES string directly, or paste a SMILES string. | |
SMILES will be automatically converted to SELFIES using | |
<a href="https://github.com/aspuru-guzik-group/selfies" target="_blank">SELFIES encoder</a>. | |
If conversion fails, a red error message will be displayed.</li> | |
<li>Optionally enter a <strong>1-based</strong> drug atom or substructure index | |
to highlight the Top-10 interacting protein residues.</li> | |
<li>After inference, you can use the | |
โDownload PDFโ link to export a high-resolution vector version.</li> | |
</ul> | |
</div> | |
<div class="card"> | |
<form method="POST" enctype="multipart/form-data" class="grid"> | |
<div><label>Protein Structure (.pdb / .cif)</label> | |
<input type="file" name="structure_file"> | |
<input type="hidden" name="tmp_structure_path" value="{{ tmp_structure_path }}"></div> | |
<div><label>Protein Sequence</label> | |
<textarea name="protein_sequence" placeholder="Confirm / paste sequenceโฆ">{{ protein_seq }}</textarea></div> | |
<div><label>Drug Sequence (SELFIES/SMILES)</label> | |
<textarea name="drug_sequence" placeholder="[C][C][O]/cco โฆ">{{ drug_seq }}</textarea></div> | |
<label>Drug atom/substructure index (1-based) โ show Top-10 related protein residue</label> | |
<input type="number" name="drug_idx" min="1" style="width:120px"> | |
<div class="grid grid-2"> | |
<button class="btn btn-primary" type="Inference" name="confirm_structure">Confirm Structure</button> | |
<button class="btn btn-primary" type="Inference" name="Inference">Inference</button> | |
</div> | |
<button class="btn btn-neutral" style="width:100%" type="Inference" name="clear">Clear</button> | |
</form> | |
{% if structure_seq %} | |
<div style="margin-top:18px"><strong>Structure-aware sequence:</strong><pre>{{ structure_seq }}</pre></div> | |
{% endif %} | |
{% if result_html %} | |
<div class="vis-box" style="margin-top:26px">{{ result_html|safe }}</div> | |
{% endif %} | |
</div></body></html> | |
""", | |
protein_seq=protein_seq, drug_seq=drug_seq, structure_seq=structure_seq, | |
result_html=result_html, tmp_structure_path=tmp_structure_path) | |
# โโโโโ run โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | |
if __name__ == "__main__": | |
app.run(debug=True, host="0.0.0.0", port=7860) |