File size: 23,773 Bytes
5676c75
 
 
91a8b2f
5676c75
 
 
 
 
 
 
 
 
 
91a8b2f
5676c75
91a8b2f
5676c75
fe43b7a
5676c75
 
 
fe43b7a
5676c75
 
 
 
 
 
 
 
 
 
 
fe43b7a
91a8b2f
5676c75
 
 
 
 
 
 
 
 
 
ab4771d
 
 
5676c75
fe43b7a
91a8b2f
5676c75
fe43b7a
5676c75
91a8b2f
5676c75
91a8b2f
5676c75
 
91a8b2f
5676c75
91a8b2f
5676c75
 
91a8b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe43b7a
91a8b2f
 
 
 
 
 
5676c75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe43b7a
5676c75
 
fde18d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import os, sys, argparse, tempfile, shutil, base64, io
from flask import Flask, request, render_template_string
from werkzeug.utils import secure_filename
from torch.utils.data import DataLoader
import selfies
from rdkit import Chem

import torch
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib import cm
from typing import Optional

from utils.drug_tokenizer import DrugTokenizer
from transformers import EsmForMaskedLM, EsmTokenizer, AutoModel
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI
from utils.foldseek_util import get_struc_seq

# โ”€โ”€โ”€โ”€โ”€ Biopython fallback โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
from Bio.PDB import PDBParser, MMCIFParser
from Bio.Data import IUPACData

three2one = {k.upper(): v for k, v in IUPACData.protein_letters_3to1.items()}
three2one.update({"SEC": "C", "PYL": "K"})
def simple_seq_from_structure(path: str) -> str:
    parser = MMCIFParser(QUIET=True) if path.endswith(".cif") else PDBParser(QUIET=True)
    chain  = next(parser.get_structure("P", path).get_chains())
    return "".join(three2one.get(res.get_resname().upper(), "X") for res in chain)

# โ”€โ”€โ”€โ”€โ”€ global paths / args โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
FOLDSEEK_BIN = shutil.which("foldseek")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
sys.path.append("..")

def parse_config():
    p = argparse.ArgumentParser()
    p.add_argument("-f")
    p.add_argument("--prot_encoder_path", default="westlake-repl/SaProt_650M_AF2")
    p.add_argument("--drug_encoder_path", default="HUBioDataLab/SELFormer")
    p.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}")
    p.add_argument("--group_size", type=int, default=1)
    p.add_argument("--lr", type=float, default=1e-4)
    p.add_argument("--fusion", default="CAN")
    p.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu")
    p.add_argument("--save_path_prefix", default="save_model_ckp/")
    p.add_argument("--dataset", default="BindingDB",
               help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')")

    return p.parse_args()

args = parse_config()
DEVICE = args.device

# โ”€โ”€โ”€โ”€โ”€ tokenisers & encoders โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
prot_model     = EsmForMaskedLM.from_pretrained(args.prot_encoder_path)

drug_tokenizer = DrugTokenizer()        # SELFIES
drug_model     = AutoModel.from_pretrained(args.drug_encoder_path)

encoding = Pre_encoded(prot_model, drug_model, args).to(DEVICE)

# โ”€โ”€โ”€ collate fn โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
def collate_fn(batch):
    query1, query2, scores = zip(*batch)
    
    query_encodings1 = prot_tokenizer.batch_encode_plus(
        list(query1),
        max_length=512,
        padding="max_length",
        truncation=True,
        add_special_tokens=True,
        return_tensors="pt",
    )
    query_encodings2 = drug_tokenizer.batch_encode_plus(
        list(query2),
        max_length=512,
        padding="max_length",
        truncation=True,
        add_special_tokens=True,
        return_tensors="pt",
    )
    scores = torch.tensor(list(scores))

    attention_mask1 = query_encodings1["attention_mask"].bool()
    attention_mask2 = query_encodings2["attention_mask"].bool()

    return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
# def collate_fn_batch_encoding(batch):

def smiles_to_selfies(smiles: str) -> Optional[str]:
    try:
        mol = Chem.MolFromSmiles(smiles)
        if mol is None:
            return None
        selfies_str = selfies.encoder(smiles)
        return selfies_str
    except Exception:
        return None


# โ”€โ”€โ”€โ”€โ”€ single-case embedding โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
def get_case_feature(model, loader):
    model.eval()
    with torch.no_grad():
        for p_ids, p_mask, d_ids, d_mask, _ in loader:
            p_ids, p_mask = p_ids.to(DEVICE), p_mask.to(DEVICE)
            d_ids, d_mask = d_ids.to(DEVICE), d_mask.to(DEVICE)
            p_emb, d_emb = model.encoding(p_ids, p_mask, d_ids, d_mask)
            return [(p_emb.cpu(), d_emb.cpu(),
                     p_ids.cpu(), d_ids.cpu(),
                     p_mask.cpu(), d_mask.cpu(), None)]

# โ”€โ”€โ”€โ”€โ”€ helper๏ผš่ฟ‡ๆปค็‰นๆฎŠ token โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
def clean_tokens(ids, tokenizer):
    toks = tokenizer.convert_ids_to_tokens(ids.tolist())
    return [t for t in toks if t not in tokenizer.all_special_tokens]

# โ”€โ”€โ”€โ”€โ”€ visualisation โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€

def visualize_attention(model, feats, drug_idx: Optional[int] = None) -> str:
    """
    Render a Protein โ†’ Drug cross-attention heat-map and, optionally, a
    Top-20 protein-residue table for a chosen drug-token index.

    The token index shown on the x-axis (and accepted via *drug_idx*) is **the
    position of that token in the *original* drug sequence**, *after* the
    tokeniser but *before* any pruning or truncation (1-based in the labels,
    0-based for the function argument).

    Returns
    -------
    html : str
        Base64-embedded PNG heat-map (+ optional HTML table).
    """
    model.eval()
    with torch.no_grad():
        # โ”€โ”€ unpack single-case tensors โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        p_emb, d_emb, p_ids, d_ids, p_mask, d_mask, _ = feats[0]
        p_emb, d_emb = p_emb.to(DEVICE), d_emb.to(DEVICE)
        p_mask, d_mask = p_mask.to(DEVICE), d_mask.to(DEVICE)

        # โ”€โ”€ forward pass: Protein โ†’ Drug attention (B, n_p, n_d) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        _, att_pd = model(p_emb, d_emb, p_mask, d_mask)
        attn = att_pd.squeeze(0).cpu()                                  # (n_p, n_d)

        # โ”€โ”€ decode tokens (skip special symbols) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        def clean_ids(ids, tokenizer):
            toks = tokenizer.convert_ids_to_tokens(ids.tolist())
            return [t for t in toks if t not in tokenizer.all_special_tokens]

        # โ”€โ”€ decode full sequences + record 1-based indices โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        p_tokens_full  = clean_ids(p_ids[0],  prot_tokenizer)
        p_indices_full = list(range(1, len(p_tokens_full)  + 1))

        d_tokens_full  = clean_ids(d_ids[0],  drug_tokenizer)
        d_indices_full = list(range(1, len(d_tokens_full)  + 1))

        # โ”€โ”€ safety cut-off to match attn mat size โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        p_tokens       = p_tokens_full[: attn.size(0)]
        p_indices_full = p_indices_full[: attn.size(0)]
        d_tokens_full  = d_tokens_full[: attn.size(1)]
        d_indices_full = d_indices_full[: attn.size(1)]
        attn           = attn[: len(p_tokens_full), : len(d_tokens_full)]

        # โ”€โ”€ adaptive sparsity pruning โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        thr = attn.max().item() * 0.05
        row_keep = (attn.max(dim=1).values > thr)
        col_keep = (attn.max(dim=0).values > thr)

        if row_keep.sum() < 3:
            row_keep[:] = True
        if col_keep.sum() < 3:
            col_keep[:] = True

        attn       = attn[row_keep][:, col_keep]
        p_tokens   = [tok for keep, tok in zip(row_keep, p_tokens)        if keep]
        p_indices  = [idx for keep, idx in zip(row_keep, p_indices_full)  if keep]
        d_tokens   = [tok for keep, tok in zip(col_keep, d_tokens_full)   if keep]
        d_indices  = [idx for keep, idx in zip(col_keep, d_indices_full)  if keep]

        # โ”€โ”€ cap column count at 150 for readability โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        if attn.size(1) > 150:
            topc       = torch.topk(attn.sum(0), k=150).indices
            attn       = attn[:, topc]
            d_tokens   = [d_tokens [i] for i in topc]
            d_indices  = [d_indices[i] for i in topc]

        # โ”€โ”€ draw heat-map โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        x_labels = [f"{idx}:{tok}" for idx, tok in zip(d_indices, d_tokens)]
        y_labels = [f"{idx}:{tok}" for idx, tok in zip(p_indices, p_tokens)]


        fig_w = min(22, max(8, len(x_labels) * 0.6))    # ~0.6โ€ณ per column
        fig_h = min(24, max(6, len(p_tokens) * 0.8))  

        fig, ax = plt.subplots(figsize=(fig_w, fig_h))
        im = ax.imshow(attn.numpy(), aspect="auto",
                       cmap=cm.viridis, interpolation="nearest")

        ax.set_title("Protein โ†’ Drug Attention", pad=8, fontsize=10)

        ax.set_xticks(range(len(x_labels)))
        ax.set_xticklabels(x_labels, rotation=90, fontsize=8,
                           ha="center", va="center")
        ax.tick_params(axis="x", top=True, bottom=False,
                       labeltop=True, labelbottom=False, pad=27)

        ax.set_yticks(range(len(y_labels)))
        ax.set_yticklabels(y_labels, fontsize=7)
        ax.tick_params(axis="y", top=True, bottom=False,
                    labeltop=True, labelbottom=False,
                    pad=10)

        fig.colorbar(im, fraction=0.026, pad=0.01)
        fig.tight_layout()

        buf = io.BytesIO()
        fig.savefig(buf, format="png", dpi=140)
        plt.close(fig)
        html = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" />'

        # โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ็”Ÿๆˆ Top-20 ่กจ๏ผˆ่‹ฅ้œ€่ฆ๏ผ‰ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        table_html = ""                   # ๅ…ˆ่ฎพ็ฉบไธฒ๏ผŒๆ–นไพฟๅŽ้ข็ปŸไธ€ๆ‹ผๆŽฅ
        if drug_idx is not None:
            # map original 0-based drug_idx โ†’ current column position
            if (drug_idx + 1) in d_indices:
                col_pos = d_indices.index(drug_idx + 1)
            elif 0 <= drug_idx < len(d_tokens):
                col_pos = drug_idx
            else:
                col_pos = None

            if col_pos is not None:
                col_vec = attn[:, col_pos]
                topk    = torch.topk(col_vec, k=min(20, len(col_vec))).indices.tolist()

                rank_hdr = "".join(f"<th>{r+1}</th>"         for r in range(len(topk)))
                res_row  = "".join(f"<td>{p_tokens[i]}</td>" for i in topk)
                pos_row  = "".join(f"<td>{p_indices[i]}</td>"for i in topk)

                drug_tok_text = d_tokens[col_pos]
                orig_idx      = d_indices[col_pos]

                table_html = (
                    f"<h4 style='margin-bottom:6px'>"
                    f"Drug token #{orig_idx} <code>{drug_tok_text}</code> "
                    f"โ†’ Top-20 Protein residues</h4>"
                    "<table class='tg' style='margin-bottom:8px'>"
                    f"<tr><th>Rank</th>{rank_hdr}</tr>"
                    f"<tr><td>Residue</td>{res_row}</tr>"
                    f"<tr><td>Position</td>{pos_row}</tr>"
                    "</table>")

        # โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ็”Ÿๆˆๅฏๆ”พๅคง + ๅฏไธ‹่ฝฝ็š„็ƒญๅ›พ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        buf_png = io.BytesIO()
        fig.savefig(buf_png, format="png", dpi=140)   # ้ข„่งˆ๏ผˆๅ…‰ๆ …๏ผ‰
        buf_png.seek(0)

        buf_pdf = io.BytesIO()
        fig.savefig(buf_pdf, format="pdf")            # ้ซ˜ๆธ…ไธ‹่ฝฝ๏ผˆ็Ÿข้‡๏ผ‰
        buf_pdf.seek(0)
        plt.close(fig)

        png_b64 = base64.b64encode(buf_png.getvalue()).decode()
        pdf_b64 = base64.b64encode(buf_pdf.getvalue()).decode()

        html_heat = (
            f"<a href='data:image/png;base64,{png_b64}' target='_blank' "
            f"title='Click to enlarge'>"
            f"<img src='data:image/png;base64,{png_b64}' "
            f"style='max-width:100%;height:auto;cursor:zoom-in' /></a>"
            f"<div style='margin-top:6px'>"
            f"<a href='data:application/pdf;base64,{pdf_b64}' "
            f"download='attention_heatmap.pdf'>Download PDF</a></div>"
        )

        # โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ่ฟ”ๅ›žๆœ€็ปˆ HTML โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
        return table_html + html_heat


# โ”€โ”€โ”€โ”€โ”€ Flask app โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
app = Flask(__name__)

@app.route("/", methods=["GET", "POST"])
def index():
    protein_seq = drug_seq = structure_seq = ""; result_html = None
    tmp_structure_path = ""; drug_idx = None

    if request.method == "POST":
        drug_idx_raw = request.form.get("drug_idx", "")
        drug_idx = int(drug_idx_raw)-1 if drug_idx_raw.isdigit() else None

        struct = request.files.get("structure_file")
        if struct and struct.filename:
            path = os.path.join(tempfile.gettempdir(), secure_filename(struct.filename))
            struct.save(path); tmp_structure_path = path
        else:
            tmp_structure_path = request.form.get("tmp_structure_path", "")

        if "clear" in request.form:
            protein_seq = drug_seq = structure_seq = ""; tmp_structure_path = ""

        elif "confirm_structure" in request.form and tmp_structure_path:
            try:
                parsed = get_struc_seq(FOLDSEEK_BIN, tmp_structure_path, None, plddt_mask=False)
                chain  = list(parsed.keys())[0]; _, _, structure_seq = parsed[chain]
            except Exception:
                structure_seq = simple_seq_from_structure(tmp_structure_path)
            protein_seq = structure_seq
            drug_input = request.form.get("drug_sequence", "")
            # Heuristically check if input is SMILES (not starting with [) and convert
            if not drug_input.strip().startswith("["):
                converted = smiles_to_selfies(drug_input.strip())
                if converted:
                    drug_seq = converted
                else:
                    drug_seq = ""
                    result_html = "<p style='color:red'><strong>Failed to convert SMILES to SELFIES. Please check the input string.</strong></p>"
            else:
                drug_seq = drug_input

        elif "Inference" in request.form:
            protein_seq = request.form.get("protein_sequence", "")
            drug_seq    = request.form.get("drug_sequence", "")
            if protein_seq and drug_seq:
                loader = DataLoader([(protein_seq, drug_seq, 1)], batch_size=1,
                                    collate_fn=collate_fn)
                feats  = get_case_feature(encoding, loader)
                model  = FusionDTI(446, 768, args).to(DEVICE)
                ckpt   = os.path.join(f"{args.save_path_prefix}{args.dataset}_{args.fusion}",
                                      "best_model.ckpt")
                if os.path.isfile(ckpt):
                    model.load_state_dict(torch.load(ckpt, map_location=DEVICE))
                result_html = visualize_attention(model, feats, drug_idx)

    return render_template_string(
    # โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ HTML (ๅŽŸ UI + ๆ–ฐ่พ“ๅ…ฅๆก†) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
    """
<!doctype html>
<html lang="en"><head><meta charset="utf-8"><title>FusionDTI </title>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&family=Poppins:wght@500;600&display=swap" rel="stylesheet">

<style>
:root{--bg:#f3f4f6;--card:#fff;--primary:#6366f1;--primary-dark:#4f46e5;--text:#111827;--border:#e5e7eb;}
*{box-sizing:border-box;margin:0;padding:0}
body{background:var(--bg);color:var(--text);font-family:Inter,system-ui,Arial,sans-serif;line-height:1.5;padding:32px 12px;}
h1{font-family:Poppins,Inter,sans-serif;font-weight:600;font-size:1.7rem;text-align:center;margin-bottom:28px;letter-spacing:-.2px;}
.card{max-width:1000px;margin:0 auto;background:var(--card);border:1px solid var(--border);
      border-radius:12px;box-shadow:0 2px 6px rgba(0,0,0,.05);padding:32px 36px;}
label{font-weight:500;margin-bottom:6px;display:block}
textarea,input[type=file]{width:100%;font-size:.9rem;font-family:monospace;padding:10px 12px;
      border:1px solid var(--border);border-radius:8px;background:#fff;resize:vertical;}
textarea{min-height:90px}
.btn{appearance:none;border:none;cursor:pointer;padding:12px 22px;border-radius:8px;font-weight:500;
     font-family:Inter,sans-serif;transition:all .18s ease;color:#fff;}
.btn-primary{background:var(--primary)}.btn-primary:hover{background:var(--primary-dark)}
.btn-neutral{background:#9ca3af;}.btn-neutral:hover{background:#6b7280}
.grid{display:grid;gap:22px}.grid-2{grid-template-columns:1fr 1fr}
.vis-box{margin-top:28px;border:1px solid var(--border);border-radius:10px;overflow:auto;max-height:72vh;}
pre{white-space:pre-wrap;word-break:break-all;font-family:monospace;margin-top:8px}

/* โ”€โ”€ tidy table for Top-20 list โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ */
table.tg{border-collapse:collapse;margin-top:4px;font-size:0.83rem}
table.tg th,table.tg td{border:1px solid var(--border);padding:6px 8px;text-align:left}
table.tg th{background:var(--bg);font-weight:600}
</style>
</head>
<body>
<h1> Token-level Visualiser for Drug-Target Interaction</h1>

<!-- โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Project Links (larger + spaced) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ -->
<div style="margin-top:24px; text-align:center;">
  <a href="https://zhaohanm.github.io/FusionDTI.github.io/" target="_blank"
     style="display:inline-block;margin:8px 18px;padding:10px 20px;
            background:linear-gradient(to right,#10b981,#059669);color:white;
            font-weight:600;border-radius:8px;font-size:0.9rem;
            font-family:Inter,sans-serif;text-decoration:none;
            box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;"
     onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'">
    ๐ŸŒ Project Page
  </a>

  <a href="https://arxiv.org/abs/2406.01651" target="_blank"
     style="display:inline-block;margin:8px 18px;padding:10px 20px;
            background:linear-gradient(to right,#ef4444,#dc2626);color:white;
            font-weight:600;border-radius:8px;font-size:0.9rem;
            font-family:Inter,sans-serif;text-decoration:none;
            box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;"
     onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'">
    ๐Ÿ“„ ArXiv: 2406.01651
  </a>

  <a href="https://github.com/ZhaohanM/FusionDTI" target="_blank"
     style="display:inline-block;margin:8px 18px;padding:10px 20px;
            background:linear-gradient(to right,#3b82f6,#2563eb);color:white;
            font-weight:600;border-radius:8px;font-size:0.9rem;
            font-family:Inter,sans-serif;text-decoration:none;
            box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;"
     onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'">
    ๐Ÿ’ป GitHub Repo
  </a>
</div>

<!-- โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€  Guidelines for Use  โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ -->
<div class="card" style="margin-bottom:24px">
  <h2 style="font-size:1.2rem;margin-bottom:14px">Guidelines for Use</h2>
  <ul style="margin-left:18px;line-height:1.55;list-style:decimal;">
    <li><strong>Convert protein structure into a structure-aware sequence:</strong>
        Upload a <code>.pdb</code> or <code>.cif</code> file. A structure-aware
        sequence will be generated using
        <a href="https://github.com/steineggerlab/foldseek" target="_blank">Foldseek</a>,
        based on 3D structures from
        <a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold&nbsp;DB</a> or the
        <a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a>.</li>

    <li><strong>If you only have an amino acid sequence or a UniProt ID,</strong>
        you must first visit the
        <a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a>
        or <a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold&nbsp;DB</a>
        to search and download the corresponding <code>.cif</code> or <code>.pdb</code> file.</li>

    <li><strong>Drug input supports both SELFIES and SMILES:</strong><br>
        You can enter a SELFIES string directly, or paste a SMILES string.
        SMILES will be automatically converted to SELFIES using
        <a href="https://github.com/aspuru-guzik-group/selfies" target="_blank">SELFIES encoder</a>.
        If conversion fails, a red error message will be displayed.</li>

    <li>Optionally enter a <strong>1-based</strong> drug atom or substructure index
        to highlight the Top-10 interacting protein residues.</li>

    <li>After inference, you can use the
        โ€œDownload PDFโ€ link to export a high-resolution vector version.</li>
  </ul>
</div>

<div class="card">
<form method="POST" enctype="multipart/form-data" class="grid">

  <div><label>Protein Structure (.pdb / .cif)</label>
       <input type="file" name="structure_file">
       <input type="hidden" name="tmp_structure_path" value="{{ tmp_structure_path }}"></div>

  <div><label>Protein Sequence</label>
       <textarea name="protein_sequence" placeholder="Confirm / paste sequenceโ€ฆ">{{ protein_seq }}</textarea></div>

  <div><label>Drug Sequence (SELFIES/SMILES)</label>
       <textarea name="drug_sequence" placeholder="[C][C][O]/cco โ€ฆ">{{ drug_seq }}</textarea></div>

    <label>Drug atom/substructure index (1-based) โ€“ show Top-10 related protein residue</label>
        <input type="number" name="drug_idx" min="1" style="width:120px">

  <div class="grid grid-2">
    <button class="btn btn-primary" type="Inference" name="confirm_structure">Confirm Structure</button>
    <button class="btn btn-primary" type="Inference" name="Inference">Inference</button>
  </div>
  <button class="btn btn-neutral" style="width:100%" type="Inference" name="clear">Clear</button>
</form>

{% if structure_seq %}
  <div style="margin-top:18px"><strong>Structure-aware sequence:</strong><pre>{{ structure_seq }}</pre></div>
{% endif %}
{% if result_html %}
  <div class="vis-box" style="margin-top:26px">{{ result_html|safe }}</div>
{% endif %}
</div></body></html>
    """,
    protein_seq=protein_seq, drug_seq=drug_seq, structure_seq=structure_seq,
    result_html=result_html, tmp_structure_path=tmp_structure_path)

# โ”€โ”€โ”€โ”€โ”€ run โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
if __name__ == "__main__":
    app.run(debug=True, host="0.0.0.0", port=7860)