Spaces:
Running
Running
File size: 23,773 Bytes
5676c75 91a8b2f 5676c75 91a8b2f 5676c75 91a8b2f 5676c75 fe43b7a 5676c75 fe43b7a 5676c75 fe43b7a 91a8b2f 5676c75 ab4771d 5676c75 fe43b7a 91a8b2f 5676c75 fe43b7a 5676c75 91a8b2f 5676c75 91a8b2f 5676c75 91a8b2f 5676c75 91a8b2f 5676c75 91a8b2f fe43b7a 91a8b2f 5676c75 fe43b7a 5676c75 fde18d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import os, sys, argparse, tempfile, shutil, base64, io
from flask import Flask, request, render_template_string
from werkzeug.utils import secure_filename
from torch.utils.data import DataLoader
import selfies
from rdkit import Chem
import torch
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib import cm
from typing import Optional
from utils.drug_tokenizer import DrugTokenizer
from transformers import EsmForMaskedLM, EsmTokenizer, AutoModel
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI
from utils.foldseek_util import get_struc_seq
# โโโโโ Biopython fallback โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
from Bio.PDB import PDBParser, MMCIFParser
from Bio.Data import IUPACData
three2one = {k.upper(): v for k, v in IUPACData.protein_letters_3to1.items()}
three2one.update({"SEC": "C", "PYL": "K"})
def simple_seq_from_structure(path: str) -> str:
parser = MMCIFParser(QUIET=True) if path.endswith(".cif") else PDBParser(QUIET=True)
chain = next(parser.get_structure("P", path).get_chains())
return "".join(three2one.get(res.get_resname().upper(), "X") for res in chain)
# โโโโโ global paths / args โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
FOLDSEEK_BIN = shutil.which("foldseek")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
sys.path.append("..")
def parse_config():
p = argparse.ArgumentParser()
p.add_argument("-f")
p.add_argument("--prot_encoder_path", default="westlake-repl/SaProt_650M_AF2")
p.add_argument("--drug_encoder_path", default="HUBioDataLab/SELFormer")
p.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}")
p.add_argument("--group_size", type=int, default=1)
p.add_argument("--lr", type=float, default=1e-4)
p.add_argument("--fusion", default="CAN")
p.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu")
p.add_argument("--save_path_prefix", default="save_model_ckp/")
p.add_argument("--dataset", default="BindingDB",
help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')")
return p.parse_args()
args = parse_config()
DEVICE = args.device
# โโโโโ tokenisers & encoders โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path)
drug_tokenizer = DrugTokenizer() # SELFIES
drug_model = AutoModel.from_pretrained(args.drug_encoder_path)
encoding = Pre_encoded(prot_model, drug_model, args).to(DEVICE)
# โโโ collate fn โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def collate_fn(batch):
query1, query2, scores = zip(*batch)
query_encodings1 = prot_tokenizer.batch_encode_plus(
list(query1),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
query_encodings2 = drug_tokenizer.batch_encode_plus(
list(query2),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
scores = torch.tensor(list(scores))
attention_mask1 = query_encodings1["attention_mask"].bool()
attention_mask2 = query_encodings2["attention_mask"].bool()
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
# def collate_fn_batch_encoding(batch):
def smiles_to_selfies(smiles: str) -> Optional[str]:
try:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
selfies_str = selfies.encoder(smiles)
return selfies_str
except Exception:
return None
# โโโโโ single-case embedding โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def get_case_feature(model, loader):
model.eval()
with torch.no_grad():
for p_ids, p_mask, d_ids, d_mask, _ in loader:
p_ids, p_mask = p_ids.to(DEVICE), p_mask.to(DEVICE)
d_ids, d_mask = d_ids.to(DEVICE), d_mask.to(DEVICE)
p_emb, d_emb = model.encoding(p_ids, p_mask, d_ids, d_mask)
return [(p_emb.cpu(), d_emb.cpu(),
p_ids.cpu(), d_ids.cpu(),
p_mask.cpu(), d_mask.cpu(), None)]
# โโโโโ helper๏ผ่ฟๆปค็นๆฎ token โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def clean_tokens(ids, tokenizer):
toks = tokenizer.convert_ids_to_tokens(ids.tolist())
return [t for t in toks if t not in tokenizer.all_special_tokens]
# โโโโโ visualisation โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def visualize_attention(model, feats, drug_idx: Optional[int] = None) -> str:
"""
Render a Protein โ Drug cross-attention heat-map and, optionally, a
Top-20 protein-residue table for a chosen drug-token index.
The token index shown on the x-axis (and accepted via *drug_idx*) is **the
position of that token in the *original* drug sequence**, *after* the
tokeniser but *before* any pruning or truncation (1-based in the labels,
0-based for the function argument).
Returns
-------
html : str
Base64-embedded PNG heat-map (+ optional HTML table).
"""
model.eval()
with torch.no_grad():
# โโ unpack single-case tensors โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
p_emb, d_emb, p_ids, d_ids, p_mask, d_mask, _ = feats[0]
p_emb, d_emb = p_emb.to(DEVICE), d_emb.to(DEVICE)
p_mask, d_mask = p_mask.to(DEVICE), d_mask.to(DEVICE)
# โโ forward pass: Protein โ Drug attention (B, n_p, n_d) โโโโโโโโโโโโโโโ
_, att_pd = model(p_emb, d_emb, p_mask, d_mask)
attn = att_pd.squeeze(0).cpu() # (n_p, n_d)
# โโ decode tokens (skip special symbols) โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
def clean_ids(ids, tokenizer):
toks = tokenizer.convert_ids_to_tokens(ids.tolist())
return [t for t in toks if t not in tokenizer.all_special_tokens]
# โโ decode full sequences + record 1-based indices โโโโโโโโโโโโโโโโโโ
p_tokens_full = clean_ids(p_ids[0], prot_tokenizer)
p_indices_full = list(range(1, len(p_tokens_full) + 1))
d_tokens_full = clean_ids(d_ids[0], drug_tokenizer)
d_indices_full = list(range(1, len(d_tokens_full) + 1))
# โโ safety cut-off to match attn mat size โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
p_tokens = p_tokens_full[: attn.size(0)]
p_indices_full = p_indices_full[: attn.size(0)]
d_tokens_full = d_tokens_full[: attn.size(1)]
d_indices_full = d_indices_full[: attn.size(1)]
attn = attn[: len(p_tokens_full), : len(d_tokens_full)]
# โโ adaptive sparsity pruning โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
thr = attn.max().item() * 0.05
row_keep = (attn.max(dim=1).values > thr)
col_keep = (attn.max(dim=0).values > thr)
if row_keep.sum() < 3:
row_keep[:] = True
if col_keep.sum() < 3:
col_keep[:] = True
attn = attn[row_keep][:, col_keep]
p_tokens = [tok for keep, tok in zip(row_keep, p_tokens) if keep]
p_indices = [idx for keep, idx in zip(row_keep, p_indices_full) if keep]
d_tokens = [tok for keep, tok in zip(col_keep, d_tokens_full) if keep]
d_indices = [idx for keep, idx in zip(col_keep, d_indices_full) if keep]
# โโ cap column count at 150 for readability โโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
if attn.size(1) > 150:
topc = torch.topk(attn.sum(0), k=150).indices
attn = attn[:, topc]
d_tokens = [d_tokens [i] for i in topc]
d_indices = [d_indices[i] for i in topc]
# โโ draw heat-map โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
x_labels = [f"{idx}:{tok}" for idx, tok in zip(d_indices, d_tokens)]
y_labels = [f"{idx}:{tok}" for idx, tok in zip(p_indices, p_tokens)]
fig_w = min(22, max(8, len(x_labels) * 0.6)) # ~0.6โณ per column
fig_h = min(24, max(6, len(p_tokens) * 0.8))
fig, ax = plt.subplots(figsize=(fig_w, fig_h))
im = ax.imshow(attn.numpy(), aspect="auto",
cmap=cm.viridis, interpolation="nearest")
ax.set_title("Protein โ Drug Attention", pad=8, fontsize=10)
ax.set_xticks(range(len(x_labels)))
ax.set_xticklabels(x_labels, rotation=90, fontsize=8,
ha="center", va="center")
ax.tick_params(axis="x", top=True, bottom=False,
labeltop=True, labelbottom=False, pad=27)
ax.set_yticks(range(len(y_labels)))
ax.set_yticklabels(y_labels, fontsize=7)
ax.tick_params(axis="y", top=True, bottom=False,
labeltop=True, labelbottom=False,
pad=10)
fig.colorbar(im, fraction=0.026, pad=0.01)
fig.tight_layout()
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=140)
plt.close(fig)
html = f'<img src="data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" />'
# โโโโโโโโโโโโโโโโโโโโโ ็ๆ Top-20 ่กจ๏ผ่ฅ้่ฆ๏ผ โโโโโโโโโโโโโโโโโโโโโ
table_html = "" # ๅ
่ฎพ็ฉบไธฒ๏ผๆนไพฟๅ้ข็ปไธๆผๆฅ
if drug_idx is not None:
# map original 0-based drug_idx โ current column position
if (drug_idx + 1) in d_indices:
col_pos = d_indices.index(drug_idx + 1)
elif 0 <= drug_idx < len(d_tokens):
col_pos = drug_idx
else:
col_pos = None
if col_pos is not None:
col_vec = attn[:, col_pos]
topk = torch.topk(col_vec, k=min(20, len(col_vec))).indices.tolist()
rank_hdr = "".join(f"<th>{r+1}</th>" for r in range(len(topk)))
res_row = "".join(f"<td>{p_tokens[i]}</td>" for i in topk)
pos_row = "".join(f"<td>{p_indices[i]}</td>"for i in topk)
drug_tok_text = d_tokens[col_pos]
orig_idx = d_indices[col_pos]
table_html = (
f"<h4 style='margin-bottom:6px'>"
f"Drug token #{orig_idx} <code>{drug_tok_text}</code> "
f"โ Top-20 Protein residues</h4>"
"<table class='tg' style='margin-bottom:8px'>"
f"<tr><th>Rank</th>{rank_hdr}</tr>"
f"<tr><td>Residue</td>{res_row}</tr>"
f"<tr><td>Position</td>{pos_row}</tr>"
"</table>")
# โโโโโโโโโโโโโโโโโโ ็ๆๅฏๆพๅคง + ๅฏไธ่ฝฝ็็ญๅพ โโโโโโโโโโโโโโโโโโโโ
buf_png = io.BytesIO()
fig.savefig(buf_png, format="png", dpi=140) # ้ข่ง๏ผๅ
ๆ
๏ผ
buf_png.seek(0)
buf_pdf = io.BytesIO()
fig.savefig(buf_pdf, format="pdf") # ้ซๆธ
ไธ่ฝฝ๏ผ็ข้๏ผ
buf_pdf.seek(0)
plt.close(fig)
png_b64 = base64.b64encode(buf_png.getvalue()).decode()
pdf_b64 = base64.b64encode(buf_pdf.getvalue()).decode()
html_heat = (
f"<a href='data:image/png;base64,{png_b64}' target='_blank' "
f"title='Click to enlarge'>"
f"<img src='data:image/png;base64,{png_b64}' "
f"style='max-width:100%;height:auto;cursor:zoom-in' /></a>"
f"<div style='margin-top:6px'>"
f"<a href='data:application/pdf;base64,{pdf_b64}' "
f"download='attention_heatmap.pdf'>Download PDF</a></div>"
)
# โโโโโโโโโโโโโโโโโโโโโโโโโ ่ฟๅๆ็ป HTML โโโโโโโโโโโโโโโโโโโโโโโโโ
return table_html + html_heat
# โโโโโ Flask app โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
app = Flask(__name__)
@app.route("/", methods=["GET", "POST"])
def index():
protein_seq = drug_seq = structure_seq = ""; result_html = None
tmp_structure_path = ""; drug_idx = None
if request.method == "POST":
drug_idx_raw = request.form.get("drug_idx", "")
drug_idx = int(drug_idx_raw)-1 if drug_idx_raw.isdigit() else None
struct = request.files.get("structure_file")
if struct and struct.filename:
path = os.path.join(tempfile.gettempdir(), secure_filename(struct.filename))
struct.save(path); tmp_structure_path = path
else:
tmp_structure_path = request.form.get("tmp_structure_path", "")
if "clear" in request.form:
protein_seq = drug_seq = structure_seq = ""; tmp_structure_path = ""
elif "confirm_structure" in request.form and tmp_structure_path:
try:
parsed = get_struc_seq(FOLDSEEK_BIN, tmp_structure_path, None, plddt_mask=False)
chain = list(parsed.keys())[0]; _, _, structure_seq = parsed[chain]
except Exception:
structure_seq = simple_seq_from_structure(tmp_structure_path)
protein_seq = structure_seq
drug_input = request.form.get("drug_sequence", "")
# Heuristically check if input is SMILES (not starting with [) and convert
if not drug_input.strip().startswith("["):
converted = smiles_to_selfies(drug_input.strip())
if converted:
drug_seq = converted
else:
drug_seq = ""
result_html = "<p style='color:red'><strong>Failed to convert SMILES to SELFIES. Please check the input string.</strong></p>"
else:
drug_seq = drug_input
elif "Inference" in request.form:
protein_seq = request.form.get("protein_sequence", "")
drug_seq = request.form.get("drug_sequence", "")
if protein_seq and drug_seq:
loader = DataLoader([(protein_seq, drug_seq, 1)], batch_size=1,
collate_fn=collate_fn)
feats = get_case_feature(encoding, loader)
model = FusionDTI(446, 768, args).to(DEVICE)
ckpt = os.path.join(f"{args.save_path_prefix}{args.dataset}_{args.fusion}",
"best_model.ckpt")
if os.path.isfile(ckpt):
model.load_state_dict(torch.load(ckpt, map_location=DEVICE))
result_html = visualize_attention(model, feats, drug_idx)
return render_template_string(
# โโโโโโโโโโโโโ HTML (ๅ UI + ๆฐ่พๅ
ฅๆก) โโโโโโโโโโโโโ
"""
<!doctype html>
<html lang="en"><head><meta charset="utf-8"><title>FusionDTI </title>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&family=Poppins:wght@500;600&display=swap" rel="stylesheet">
<style>
:root{--bg:#f3f4f6;--card:#fff;--primary:#6366f1;--primary-dark:#4f46e5;--text:#111827;--border:#e5e7eb;}
*{box-sizing:border-box;margin:0;padding:0}
body{background:var(--bg);color:var(--text);font-family:Inter,system-ui,Arial,sans-serif;line-height:1.5;padding:32px 12px;}
h1{font-family:Poppins,Inter,sans-serif;font-weight:600;font-size:1.7rem;text-align:center;margin-bottom:28px;letter-spacing:-.2px;}
.card{max-width:1000px;margin:0 auto;background:var(--card);border:1px solid var(--border);
border-radius:12px;box-shadow:0 2px 6px rgba(0,0,0,.05);padding:32px 36px;}
label{font-weight:500;margin-bottom:6px;display:block}
textarea,input[type=file]{width:100%;font-size:.9rem;font-family:monospace;padding:10px 12px;
border:1px solid var(--border);border-radius:8px;background:#fff;resize:vertical;}
textarea{min-height:90px}
.btn{appearance:none;border:none;cursor:pointer;padding:12px 22px;border-radius:8px;font-weight:500;
font-family:Inter,sans-serif;transition:all .18s ease;color:#fff;}
.btn-primary{background:var(--primary)}.btn-primary:hover{background:var(--primary-dark)}
.btn-neutral{background:#9ca3af;}.btn-neutral:hover{background:#6b7280}
.grid{display:grid;gap:22px}.grid-2{grid-template-columns:1fr 1fr}
.vis-box{margin-top:28px;border:1px solid var(--border);border-radius:10px;overflow:auto;max-height:72vh;}
pre{white-space:pre-wrap;word-break:break-all;font-family:monospace;margin-top:8px}
/* โโ tidy table for Top-20 list โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ */
table.tg{border-collapse:collapse;margin-top:4px;font-size:0.83rem}
table.tg th,table.tg td{border:1px solid var(--border);padding:6px 8px;text-align:left}
table.tg th{background:var(--bg);font-weight:600}
</style>
</head>
<body>
<h1> Token-level Visualiser for Drug-Target Interaction</h1>
<!-- โโโโโโโโโโโโโ Project Links (larger + spaced) โโโโโโโโโโโโโ -->
<div style="margin-top:24px; text-align:center;">
<a href="https://zhaohanm.github.io/FusionDTI.github.io/" target="_blank"
style="display:inline-block;margin:8px 18px;padding:10px 20px;
background:linear-gradient(to right,#10b981,#059669);color:white;
font-weight:600;border-radius:8px;font-size:0.9rem;
font-family:Inter,sans-serif;text-decoration:none;
box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;"
onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'">
๐ Project Page
</a>
<a href="https://arxiv.org/abs/2406.01651" target="_blank"
style="display:inline-block;margin:8px 18px;padding:10px 20px;
background:linear-gradient(to right,#ef4444,#dc2626);color:white;
font-weight:600;border-radius:8px;font-size:0.9rem;
font-family:Inter,sans-serif;text-decoration:none;
box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;"
onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'">
๐ ArXiv: 2406.01651
</a>
<a href="https://github.com/ZhaohanM/FusionDTI" target="_blank"
style="display:inline-block;margin:8px 18px;padding:10px 20px;
background:linear-gradient(to right,#3b82f6,#2563eb);color:white;
font-weight:600;border-radius:8px;font-size:0.9rem;
font-family:Inter,sans-serif;text-decoration:none;
box-shadow:0 2px 6px rgba(0,0,0,0.12);transition:all 0.2s ease-in-out;"
onmouseover="this.style.opacity='0.9'" onmouseout="this.style.opacity='1'">
๐ป GitHub Repo
</a>
</div>
<!-- โโโโโโโโโโโโโ Guidelines for Use โโโโโโโโโโโโโ -->
<div class="card" style="margin-bottom:24px">
<h2 style="font-size:1.2rem;margin-bottom:14px">Guidelines for Use</h2>
<ul style="margin-left:18px;line-height:1.55;list-style:decimal;">
<li><strong>Convert protein structure into a structure-aware sequence:</strong>
Upload a <code>.pdb</code> or <code>.cif</code> file. A structure-aware
sequence will be generated using
<a href="https://github.com/steineggerlab/foldseek" target="_blank">Foldseek</a>,
based on 3D structures from
<a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold DB</a> or the
<a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a>.</li>
<li><strong>If you only have an amino acid sequence or a UniProt ID,</strong>
you must first visit the
<a href="https://www.rcsb.org" target="_blank">Protein Data Bank (PDB)</a>
or <a href="https://alphafold.ebi.ac.uk" target="_blank">AlphaFold DB</a>
to search and download the corresponding <code>.cif</code> or <code>.pdb</code> file.</li>
<li><strong>Drug input supports both SELFIES and SMILES:</strong><br>
You can enter a SELFIES string directly, or paste a SMILES string.
SMILES will be automatically converted to SELFIES using
<a href="https://github.com/aspuru-guzik-group/selfies" target="_blank">SELFIES encoder</a>.
If conversion fails, a red error message will be displayed.</li>
<li>Optionally enter a <strong>1-based</strong> drug atom or substructure index
to highlight the Top-10 interacting protein residues.</li>
<li>After inference, you can use the
โDownload PDFโ link to export a high-resolution vector version.</li>
</ul>
</div>
<div class="card">
<form method="POST" enctype="multipart/form-data" class="grid">
<div><label>Protein Structure (.pdb / .cif)</label>
<input type="file" name="structure_file">
<input type="hidden" name="tmp_structure_path" value="{{ tmp_structure_path }}"></div>
<div><label>Protein Sequence</label>
<textarea name="protein_sequence" placeholder="Confirm / paste sequenceโฆ">{{ protein_seq }}</textarea></div>
<div><label>Drug Sequence (SELFIES/SMILES)</label>
<textarea name="drug_sequence" placeholder="[C][C][O]/cco โฆ">{{ drug_seq }}</textarea></div>
<label>Drug atom/substructure index (1-based) โ show Top-10 related protein residue</label>
<input type="number" name="drug_idx" min="1" style="width:120px">
<div class="grid grid-2">
<button class="btn btn-primary" type="Inference" name="confirm_structure">Confirm Structure</button>
<button class="btn btn-primary" type="Inference" name="Inference">Inference</button>
</div>
<button class="btn btn-neutral" style="width:100%" type="Inference" name="clear">Clear</button>
</form>
{% if structure_seq %}
<div style="margin-top:18px"><strong>Structure-aware sequence:</strong><pre>{{ structure_seq }}</pre></div>
{% endif %}
{% if result_html %}
<div class="vis-box" style="margin-top:26px">{{ result_html|safe }}</div>
{% endif %}
</div></body></html>
""",
protein_seq=protein_seq, drug_seq=drug_seq, structure_seq=structure_seq,
result_html=result_html, tmp_structure_path=tmp_structure_path)
# โโโโโ run โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0", port=7860) |