Spaces:
Running
Running
import gradio as gr | |
import os | |
import json | |
import torch | |
from dotenv import load_dotenv | |
import logging | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.StreamHandler(), | |
logging.FileHandler("app.log") | |
] | |
) | |
logger = logging.getLogger(__name__) | |
# Load environment variables | |
load_dotenv() | |
# Load config file | |
def load_config(config_path="transformers_config.json"): | |
try: | |
with open(config_path, 'r') as f: | |
config = json.load(f) | |
return config | |
except Exception as e: | |
logger.error(f"Error loading config: {str(e)}") | |
return {} | |
# Load configuration | |
config = load_config() | |
model_config = config.get("model_config", {}) | |
# Model details from config | |
MODEL_NAME = model_config.get("model_name_or_path", "unsloth/DeepSeek-R1-Distill-Qwen-14B-bnb-4bit") | |
SPACE_NAME = os.getenv("HF_SPACE_NAME", "phi4training") | |
TRAINING_ACTIVE = os.path.exists("TRAINING_ACTIVE") | |
# Create Gradio interface - training status only, no model outputs | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
gr.Markdown(f"# {SPACE_NAME}: Training Status Dashboard") | |
with gr.Row(): | |
with gr.Column(): | |
status = gr.Markdown( | |
f""" | |
## Research Training Phase Active | |
**Model**: {MODEL_NAME} | |
**Dataset**: phi4-cognitive-dataset | |
This is a multidisciplinary research training phase. The model is not available for interactive use. | |
### Training Configuration: | |
- **Epochs**: {config.get("training_config", {}).get("num_train_epochs", 3)} | |
- **Batch Size**: {config.get("training_config", {}).get("per_device_train_batch_size", 2)} | |
- **Gradient Accumulation Steps**: {config.get("training_config", {}).get("gradient_accumulation_steps", 4)} | |
- **Learning Rate**: {config.get("training_config", {}).get("learning_rate", 2e-5)} | |
- **Max Sequence Length**: {config.get("training_config", {}).get("max_seq_length", 2048)} | |
### Training Status: | |
{"🟢 Training in progress" if TRAINING_ACTIVE else "⚪ Training not currently active"} | |
⚠️ **NOTE**: This space does not provide model outputs during the research training phase. | |
""" | |
) | |
# Add a refresh button to check status | |
refresh_btn = gr.Button("Refresh Status") | |
def refresh_status(): | |
# Re-check if training is active | |
training_active = os.path.exists("TRAINING_ACTIVE") | |
return f""" | |
## Research Training Phase Active | |
**Model**: {MODEL_NAME} | |
**Dataset**: phi4-cognitive-dataset | |
This is a multidisciplinary research training phase. The model is not available for interactive use. | |
### Training Configuration: | |
- **Epochs**: {config.get("training_config", {}).get("num_train_epochs", 3)} | |
- **Batch Size**: {config.get("training_config", {}).get("per_device_train_batch_size", 2)} | |
- **Gradient Accumulation Steps**: {config.get("training_config", {}).get("gradient_accumulation_steps", 4)} | |
- **Learning Rate**: {config.get("training_config", {}).get("learning_rate", 2e-5)} | |
- **Max Sequence Length**: {config.get("training_config", {}).get("max_seq_length", 2048)} | |
### Training Status: | |
{"🟢 Training in progress" if training_active else "⚪ Training not currently active"} | |
⚠️ **NOTE**: This space does not provide model outputs during the research training phase. | |
""" | |
refresh_btn.click(refresh_status, outputs=status) | |
gr.Markdown(""" | |
### Research Training Information | |
This model is being fine-tuned on research-focused datasets and is not available for interactive querying. | |
Training logs are available to authorized researchers only. | |
""") | |
# Launch the interface | |
if __name__ == "__main__": | |
# Create an empty TRAINING_ACTIVE file to indicate training is in progress | |
# This would be managed by the actual training script | |
if not os.path.exists("TRAINING_ACTIVE"): | |
with open("TRAINING_ACTIVE", "w") as f: | |
f.write("Training in progress") | |
# Start Gradio with minimal features | |
logger.info("Starting training status dashboard") | |
demo.launch(share=False, enable_queue=False) |