Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -1,76 +1,115 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
#
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import logging
|
7 |
+
|
8 |
+
# Configure logging
|
9 |
+
logging.basicConfig(
|
10 |
+
level=logging.INFO,
|
11 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
12 |
+
handlers=[
|
13 |
+
logging.StreamHandler(),
|
14 |
+
logging.FileHandler("app.log")
|
15 |
+
]
|
16 |
+
)
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Load environment variables
|
20 |
+
load_dotenv()
|
21 |
+
|
22 |
+
# Load config file
|
23 |
+
def load_config(config_path="transformers_config.json"):
|
24 |
+
try:
|
25 |
+
with open(config_path, 'r') as f:
|
26 |
+
config = json.load(f)
|
27 |
+
return config
|
28 |
+
except Exception as e:
|
29 |
+
logger.error(f"Error loading config: {str(e)}")
|
30 |
+
return {}
|
31 |
+
|
32 |
+
# Load configuration
|
33 |
+
config = load_config()
|
34 |
+
model_config = config.get("model_config", {})
|
35 |
+
|
36 |
+
# Model details from config
|
37 |
+
MODEL_NAME = model_config.get("model_name_or_path", "unsloth/DeepSeek-R1-Distill-Qwen-14B-bnb-4bit")
|
38 |
+
SPACE_NAME = os.getenv("HF_SPACE_NAME", "phi4training")
|
39 |
+
TRAINING_ACTIVE = os.path.exists("TRAINING_ACTIVE")
|
40 |
+
|
41 |
+
# Create Gradio interface - training status only, no model outputs
|
42 |
+
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
43 |
+
gr.Markdown(f"# {SPACE_NAME}: Training Status Dashboard")
|
44 |
+
|
45 |
+
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
status = gr.Markdown(
|
48 |
+
f"""
|
49 |
+
## Research Training Phase Active
|
50 |
+
|
51 |
+
**Model**: {MODEL_NAME}
|
52 |
+
**Dataset**: phi4-cognitive-dataset
|
53 |
+
|
54 |
+
This is a multidisciplinary research training phase. The model is not available for interactive use.
|
55 |
+
|
56 |
+
### Training Configuration:
|
57 |
+
- **Epochs**: {config.get("training_config", {}).get("num_train_epochs", 3)}
|
58 |
+
- **Batch Size**: {config.get("training_config", {}).get("per_device_train_batch_size", 2)}
|
59 |
+
- **Gradient Accumulation Steps**: {config.get("training_config", {}).get("gradient_accumulation_steps", 4)}
|
60 |
+
- **Learning Rate**: {config.get("training_config", {}).get("learning_rate", 2e-5)}
|
61 |
+
- **Max Sequence Length**: {config.get("training_config", {}).get("max_seq_length", 2048)}
|
62 |
+
|
63 |
+
### Training Status:
|
64 |
+
{"🟢 Training in progress" if TRAINING_ACTIVE else "⚪ Training not currently active"}
|
65 |
+
|
66 |
+
⚠️ **NOTE**: This space does not provide model outputs during the research training phase.
|
67 |
+
"""
|
68 |
+
)
|
69 |
+
|
70 |
+
# Add a refresh button to check status
|
71 |
+
refresh_btn = gr.Button("Refresh Status")
|
72 |
+
|
73 |
+
def refresh_status():
|
74 |
+
# Re-check if training is active
|
75 |
+
training_active = os.path.exists("TRAINING_ACTIVE")
|
76 |
+
return f"""
|
77 |
+
## Research Training Phase Active
|
78 |
+
|
79 |
+
**Model**: {MODEL_NAME}
|
80 |
+
**Dataset**: phi4-cognitive-dataset
|
81 |
+
|
82 |
+
This is a multidisciplinary research training phase. The model is not available for interactive use.
|
83 |
+
|
84 |
+
### Training Configuration:
|
85 |
+
- **Epochs**: {config.get("training_config", {}).get("num_train_epochs", 3)}
|
86 |
+
- **Batch Size**: {config.get("training_config", {}).get("per_device_train_batch_size", 2)}
|
87 |
+
- **Gradient Accumulation Steps**: {config.get("training_config", {}).get("gradient_accumulation_steps", 4)}
|
88 |
+
- **Learning Rate**: {config.get("training_config", {}).get("learning_rate", 2e-5)}
|
89 |
+
- **Max Sequence Length**: {config.get("training_config", {}).get("max_seq_length", 2048)}
|
90 |
+
|
91 |
+
### Training Status:
|
92 |
+
{"🟢 Training in progress" if training_active else "⚪ Training not currently active"}
|
93 |
+
|
94 |
+
⚠️ **NOTE**: This space does not provide model outputs during the research training phase.
|
95 |
+
"""
|
96 |
+
|
97 |
+
refresh_btn.click(refresh_status, outputs=status)
|
98 |
+
|
99 |
+
gr.Markdown("""
|
100 |
+
### Research Training Information
|
101 |
+
This model is being fine-tuned on research-focused datasets and is not available for interactive querying.
|
102 |
+
Training logs are available to authorized researchers only.
|
103 |
+
""")
|
104 |
+
|
105 |
+
# Launch the interface
|
106 |
+
if __name__ == "__main__":
|
107 |
+
# Create an empty TRAINING_ACTIVE file to indicate training is in progress
|
108 |
+
# This would be managed by the actual training script
|
109 |
+
if not os.path.exists("TRAINING_ACTIVE"):
|
110 |
+
with open("TRAINING_ACTIVE", "w") as f:
|
111 |
+
f.write("Training in progress")
|
112 |
+
|
113 |
+
# Start Gradio with minimal features
|
114 |
+
logger.info("Starting training status dashboard")
|
115 |
+
demo.launch(share=False, enable_queue=False)
|