Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,58 +5,75 @@ import pandas as pd
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import scipy.optimize as sco
|
7 |
|
|
|
8 |
def get_stock_data(tickers, start, end):
|
9 |
data = yf.download(tickers, start=start, end=end)
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
return None
|
14 |
|
|
|
|
|
|
|
15 |
def calculate_returns(data):
|
16 |
log_returns = np.log(data / data.shift(1))
|
17 |
return log_returns.mean() * 252, log_returns.cov() * 252
|
18 |
|
|
|
19 |
def optimize_portfolio(returns, cov_matrix):
|
20 |
num_assets = len(returns)
|
21 |
-
|
22 |
def sharpe_ratio(weights):
|
23 |
portfolio_return = np.dot(weights, returns)
|
24 |
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
|
25 |
-
return -portfolio_return / portfolio_volatility
|
26 |
|
27 |
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
|
28 |
bounds = tuple((0, 1) for _ in range(num_assets))
|
29 |
init_guess = num_assets * [1. / num_assets]
|
30 |
-
|
31 |
result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints)
|
32 |
-
return result.x
|
33 |
|
|
|
34 |
st.title("Analisis Portofolio Saham Optimal (Model Markowitz)")
|
35 |
|
|
|
36 |
tickers_list = st.text_input("Masukkan ticker saham (contoh: BBCA.JK, TLKM.JK, BBRI.JK)", "BBCA.JK, TLKM.JK, BBRI.JK").split(", ")
|
37 |
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
|
38 |
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31"))
|
39 |
|
40 |
if st.button("Analisis Portofolio"):
|
41 |
try:
|
|
|
42 |
stock_data = get_stock_data(tickers_list, start_date, end_date)
|
43 |
-
|
44 |
-
if stock_data is None
|
45 |
-
st.error("Data tidak ditemukan atau tidak lengkap. Periksa ticker atau tanggal yang dipilih.")
|
46 |
-
else:
|
47 |
mean_returns, cov_matrix = calculate_returns(stock_data)
|
|
|
|
|
48 |
optimal_weights = optimize_portfolio(mean_returns, cov_matrix)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
except Exception as e:
|
62 |
-
st.error(f"Terjadi kesalahan: {e}")
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import scipy.optimize as sco
|
7 |
|
8 |
+
# Fungsi untuk mengunduh data saham
|
9 |
def get_stock_data(tickers, start, end):
|
10 |
data = yf.download(tickers, start=start, end=end)
|
11 |
+
|
12 |
+
if data.empty:
|
13 |
+
st.error("Data saham tidak ditemukan. Periksa ticker atau rentang tanggal.")
|
14 |
+
return None
|
15 |
+
|
16 |
+
if 'Adj Close' not in data.columns:
|
17 |
+
st.error("Kolom 'Adj Close' tidak ditemukan dalam data yang diunduh.")
|
18 |
return None
|
19 |
|
20 |
+
return data['Adj Close']
|
21 |
+
|
22 |
+
# Fungsi untuk menghitung return tahunan dan matriks kovarians
|
23 |
def calculate_returns(data):
|
24 |
log_returns = np.log(data / data.shift(1))
|
25 |
return log_returns.mean() * 252, log_returns.cov() * 252
|
26 |
|
27 |
+
# Fungsi untuk menghitung portofolio optimal
|
28 |
def optimize_portfolio(returns, cov_matrix):
|
29 |
num_assets = len(returns)
|
30 |
+
|
31 |
def sharpe_ratio(weights):
|
32 |
portfolio_return = np.dot(weights, returns)
|
33 |
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
|
34 |
+
return -portfolio_return / portfolio_volatility # Negatif untuk minimisasi
|
35 |
|
36 |
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
|
37 |
bounds = tuple((0, 1) for _ in range(num_assets))
|
38 |
init_guess = num_assets * [1. / num_assets]
|
39 |
+
|
40 |
result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints)
|
41 |
+
return result.x if result.success else None
|
42 |
|
43 |
+
# Streamlit UI
|
44 |
st.title("Analisis Portofolio Saham Optimal (Model Markowitz)")
|
45 |
|
46 |
+
# Input Saham & Tanggal
|
47 |
tickers_list = st.text_input("Masukkan ticker saham (contoh: BBCA.JK, TLKM.JK, BBRI.JK)", "BBCA.JK, TLKM.JK, BBRI.JK").split(", ")
|
48 |
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
|
49 |
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31"))
|
50 |
|
51 |
if st.button("Analisis Portofolio"):
|
52 |
try:
|
53 |
+
# Ambil data saham
|
54 |
stock_data = get_stock_data(tickers_list, start_date, end_date)
|
55 |
+
|
56 |
+
if stock_data is not None:
|
|
|
|
|
57 |
mean_returns, cov_matrix = calculate_returns(stock_data)
|
58 |
+
|
59 |
+
# Optimasi portofolio
|
60 |
optimal_weights = optimize_portfolio(mean_returns, cov_matrix)
|
61 |
+
|
62 |
+
if optimal_weights is not None:
|
63 |
+
st.subheader("Bobot Portofolio Optimal:")
|
64 |
+
for i, stock in enumerate(tickers_list):
|
65 |
+
st.write(f"{stock}: {optimal_weights[i]:.2%}")
|
66 |
+
|
67 |
+
# Plot Efficient Frontier
|
68 |
+
st.subheader("Efficient Frontier")
|
69 |
+
fig, ax = plt.subplots()
|
70 |
+
ax.scatter(np.sqrt(np.diag(cov_matrix)), mean_returns, c=mean_returns / np.sqrt(np.diag(cov_matrix)), marker='o')
|
71 |
+
ax.set_xlabel("Risiko (Standar Deviasi)")
|
72 |
+
ax.set_ylabel("Return Tahunan")
|
73 |
+
ax.set_title("Efficient Frontier")
|
74 |
+
st.pyplot(fig)
|
75 |
+
else:
|
76 |
+
st.error("Optimasi portofolio gagal. Coba dengan saham yang berbeda.")
|
77 |
+
|
78 |
except Exception as e:
|
79 |
+
st.error(f"Terjadi kesalahan: {e}")
|