Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,60 +5,52 @@ import pandas as pd
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import scipy.optimize as sco
|
7 |
|
8 |
-
# Fungsi untuk mengunduh data saham
|
9 |
def get_stock_data(tickers, start, end):
|
10 |
-
data = yf.download(tickers, start=start, end=end)
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
# Fungsi untuk menghitung return tahunan dan matriks kovarians
|
14 |
def calculate_returns(data):
|
15 |
log_returns = np.log(data / data.shift(1))
|
16 |
return log_returns.mean() * 252, log_returns.cov() * 252
|
17 |
|
18 |
-
# Fungsi untuk menghitung portofolio optimal
|
19 |
def optimize_portfolio(returns, cov_matrix):
|
20 |
num_assets = len(returns)
|
21 |
|
22 |
-
# Fungsi untuk menghitung rasio Sharpe (return / risiko)
|
23 |
def sharpe_ratio(weights):
|
24 |
portfolio_return = np.dot(weights, returns)
|
25 |
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
|
26 |
-
return -portfolio_return / portfolio_volatility
|
27 |
-
|
28 |
-
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) # Total bobot = 100%
|
29 |
-
bounds = tuple((0, 1) for _ in range(num_assets)) # Bobot saham antara 0 - 1
|
30 |
-
init_guess = num_assets * [1. / num_assets] # Tebakan awal
|
31 |
|
|
|
|
|
|
|
|
|
32 |
result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints)
|
33 |
-
return result.x
|
34 |
|
35 |
-
# Streamlit UI
|
36 |
st.title("Analisis Portofolio Saham Optimal (Model Markowitz)")
|
37 |
|
38 |
-
# Input Saham & Tanggal
|
39 |
tickers_list = st.text_input("Masukkan ticker saham (contoh: BBCA.JK, TLKM.JK, BBRI.JK)", "BBCA.JK, TLKM.JK, BBRI.JK").split(", ")
|
40 |
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
|
41 |
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31"))
|
42 |
|
43 |
if st.button("Analisis Portofolio"):
|
44 |
try:
|
45 |
-
# Ambil data saham
|
46 |
stock_data = get_stock_data(tickers_list, start_date, end_date)
|
47 |
-
|
48 |
-
|
|
|
49 |
else:
|
50 |
-
# Hitung return dan kovarians
|
51 |
mean_returns, cov_matrix = calculate_returns(stock_data)
|
52 |
-
|
53 |
-
# Optimasi portofolio
|
54 |
optimal_weights = optimize_portfolio(mean_returns, cov_matrix)
|
55 |
-
|
56 |
-
# Tampilkan hasil
|
57 |
st.subheader("Bobot Portofolio Optimal:")
|
58 |
for i, stock in enumerate(tickers_list):
|
59 |
st.write(f"{stock}: {optimal_weights[i]:.2%}")
|
60 |
-
|
61 |
-
# Plot Efficient Frontier
|
62 |
st.subheader("Efficient Frontier")
|
63 |
fig, ax = plt.subplots()
|
64 |
ax.scatter(np.sqrt(np.diag(cov_matrix)), mean_returns, c=mean_returns / np.sqrt(np.diag(cov_matrix)), marker='o')
|
@@ -66,6 +58,5 @@ if st.button("Analisis Portofolio"):
|
|
66 |
ax.set_ylabel("Return Tahunan")
|
67 |
ax.set_title("Efficient Frontier")
|
68 |
st.pyplot(fig)
|
69 |
-
|
70 |
except Exception as e:
|
71 |
-
st.error(f"Terjadi kesalahan: {e}")
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import scipy.optimize as sco
|
7 |
|
|
|
8 |
def get_stock_data(tickers, start, end):
|
9 |
+
data = yf.download(tickers, start=start, end=end)
|
10 |
+
if 'Adj Close' in data.columns:
|
11 |
+
return data['Adj Close']
|
12 |
+
else:
|
13 |
+
return None
|
14 |
|
|
|
15 |
def calculate_returns(data):
|
16 |
log_returns = np.log(data / data.shift(1))
|
17 |
return log_returns.mean() * 252, log_returns.cov() * 252
|
18 |
|
|
|
19 |
def optimize_portfolio(returns, cov_matrix):
|
20 |
num_assets = len(returns)
|
21 |
|
|
|
22 |
def sharpe_ratio(weights):
|
23 |
portfolio_return = np.dot(weights, returns)
|
24 |
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
|
25 |
+
return -portfolio_return / portfolio_volatility
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
|
28 |
+
bounds = tuple((0, 1) for _ in range(num_assets))
|
29 |
+
init_guess = num_assets * [1. / num_assets]
|
30 |
+
|
31 |
result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints)
|
32 |
+
return result.x
|
33 |
|
|
|
34 |
st.title("Analisis Portofolio Saham Optimal (Model Markowitz)")
|
35 |
|
|
|
36 |
tickers_list = st.text_input("Masukkan ticker saham (contoh: BBCA.JK, TLKM.JK, BBRI.JK)", "BBCA.JK, TLKM.JK, BBRI.JK").split(", ")
|
37 |
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
|
38 |
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2020-12-31"))
|
39 |
|
40 |
if st.button("Analisis Portofolio"):
|
41 |
try:
|
|
|
42 |
stock_data = get_stock_data(tickers_list, start_date, end_date)
|
43 |
+
|
44 |
+
if stock_data is None or stock_data.isnull().values.any():
|
45 |
+
st.error("Data tidak ditemukan atau tidak lengkap. Periksa ticker atau tanggal yang dipilih.")
|
46 |
else:
|
|
|
47 |
mean_returns, cov_matrix = calculate_returns(stock_data)
|
|
|
|
|
48 |
optimal_weights = optimize_portfolio(mean_returns, cov_matrix)
|
49 |
+
|
|
|
50 |
st.subheader("Bobot Portofolio Optimal:")
|
51 |
for i, stock in enumerate(tickers_list):
|
52 |
st.write(f"{stock}: {optimal_weights[i]:.2%}")
|
53 |
+
|
|
|
54 |
st.subheader("Efficient Frontier")
|
55 |
fig, ax = plt.subplots()
|
56 |
ax.scatter(np.sqrt(np.diag(cov_matrix)), mean_returns, c=mean_returns / np.sqrt(np.diag(cov_matrix)), marker='o')
|
|
|
58 |
ax.set_ylabel("Return Tahunan")
|
59 |
ax.set_title("Efficient Frontier")
|
60 |
st.pyplot(fig)
|
|
|
61 |
except Exception as e:
|
62 |
+
st.error(f"Terjadi kesalahan: {e}")
|