File size: 3,985 Bytes
2c21cf7
4d13673
9002fc2
2c21cf7
 
 
9002fc2
d91b022
2c21cf7
 
 
 
d91b022
4d13673
 
 
 
 
 
9002fc2
eb1696c
 
 
9002fc2
ce2acb0
eb1696c
9002fc2
eb1696c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9002fc2
 
eb1696c
 
 
 
 
9002fc2
eb1696c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c21cf7
 
 
 
 
 
 
 
 
 
 
 
d91b022
 
 
 
9002fc2
d91b022
eb1696c
4d13673
566c57e
92d8154
566c57e
32d50b0
 
 
 
 
 
2c21cf7
 
 
 
 
 
 
 
9002fc2
4d13673
2c21cf7
 
4d13673
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import json
import os

import numpy as np
import pandas as pd
import uvicorn
from countries import make_country_table
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles

with open("results.json", "r") as f:
    results = json.load(f)
scores = pd.DataFrame(results["scores"])
languages = pd.DataFrame(results["languages"])
models = pd.DataFrame(results["models"])


def mean(lst):
    return sum(lst) / len(lst) if lst else None


task_metrics = ["translation_from_bleu", "translation_to_bleu", "classification_accuracy", "mmlu_accuracy"]


def make_model_table(df, models):
    df = (
        df.groupby(["model", "task", "metric"])
        .agg({"score": "mean", "bcp_47": "nunique"})
        .reset_index()
    )
    df["task_metric"] = df["task"] + "_" + df["metric"]
    df = df.drop(columns=["task", "metric"])
    df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
    df["average"] = df[task_metrics].mean(axis=1)
    df = df.sort_values(by="average", ascending=False).reset_index()
    df = pd.merge(df, models, left_on="model", right_on="id", how="left")
    df["rank"] = df.index + 1
    df = df[
        [
            "rank",
            "model",
            "name",
            "provider_name",
            "hf_id",
            "creation_date",
            "size",
            "type",
            "license",
            "cost",
            "average",
            *task_metrics,
        ]
    ]
    return df


def make_language_table(df, languages):
    df = (
        df.groupby(["bcp_47", "task", "metric"])
        .agg({"score": "mean", "model": "nunique"})
        .reset_index()
    )
    df["task_metric"] = df["task"] + "_" + df["metric"]
    df = df.drop(columns=["task", "metric"])
    df = (
        df.pivot(index="bcp_47", columns="task_metric", values="score")
        .fillna(0)
        .reset_index()
    )
    df["average"] = df[task_metrics].mean(axis=1)
    df = pd.merge(languages, df, on="bcp_47", how="outer")
    df = df.sort_values(by="speakers", ascending=False)
    df = df[
        [
            "bcp_47",
            "language_name",
            "autonym",
            "speakers",
            "family",
            "average",
            "in_benchmark",
            *task_metrics,
        ]
    ]
    return df


app = FastAPI()

app.add_middleware(CORSMiddleware, allow_origins=["*"])
app.add_middleware(GZipMiddleware, minimum_size=1000)


def serialize(df):
    return df.replace({np.nan: None}).to_dict(orient="records")


@app.post("/api/data")
async def data(request: Request):
    body = await request.body()
    data = json.loads(body)
    selected_languages = data.get("selectedLanguages", {})
    df = scores.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
    # lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
    language_table = make_language_table(df, languages)
    datasets_df = pd.read_json("datasets.json")
    if selected_languages:
        # the filtering is only applied for the model table and the country data
        df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
    if len(df) == 0:
        model_table = pd.DataFrame()
        countries = pd.DataFrame()
    else:
        model_table = make_model_table(df, models)
        countries = make_country_table(make_language_table(df, languages))
    all_tables = {
        "model_table": serialize(model_table),
        "language_table": serialize(language_table),
        "dataset_table": serialize(datasets_df),
        "countries": serialize(countries),
    }
    return JSONResponse(content=all_tables)


app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))