David Pomerenke
commited on
Commit
·
eb1696c
1
Parent(s):
566c57e
Fix and refactor backend filtering
Browse files- evals/backend.py +73 -5
- evals/tables.py +0 -87
evals/backend.py
CHANGED
@@ -11,7 +11,74 @@ from fastapi.staticfiles import StaticFiles
|
|
11 |
|
12 |
from languages import languages
|
13 |
from models import models
|
14 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
@@ -31,16 +98,17 @@ async def data(request: Request):
|
|
31 |
body = await request.body()
|
32 |
data = json.loads(body)
|
33 |
selected_languages = data.get("selectedLanguages", {})
|
34 |
-
df =
|
35 |
-
|
|
|
36 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
37 |
-
language_table = make_language_table(
|
38 |
datasets_df = pd.read_json("data/datasets.json")
|
39 |
countries = make_country_table(language_table)
|
40 |
if selected_languages:
|
41 |
# the filtering is only applied for the model table
|
42 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
43 |
-
model_table = make_model_table(
|
44 |
all_tables = {
|
45 |
"model_table": serialize(model_table),
|
46 |
"language_table": serialize(language_table),
|
|
|
11 |
|
12 |
from languages import languages
|
13 |
from models import models
|
14 |
+
from countries import make_country_table
|
15 |
+
|
16 |
+
def mean(lst):
|
17 |
+
return sum(lst) / len(lst) if lst else None
|
18 |
+
|
19 |
+
|
20 |
+
def make_model_table(df, models):
|
21 |
+
df = (
|
22 |
+
df.groupby(["model", "task", "metric"])
|
23 |
+
.agg({"score": "mean", "bcp_47": "nunique"})
|
24 |
+
.reset_index()
|
25 |
+
)
|
26 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
27 |
+
df = df.drop(columns=["task", "metric"])
|
28 |
+
task_metrics = df["task_metric"].unique()
|
29 |
+
df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
|
30 |
+
df["average"] = df[task_metrics].mean(axis=1)
|
31 |
+
df = df.sort_values(by="average", ascending=False).reset_index()
|
32 |
+
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
33 |
+
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
|
34 |
+
df["rank"] = df.index + 1
|
35 |
+
df = df[
|
36 |
+
[
|
37 |
+
"rank",
|
38 |
+
"model",
|
39 |
+
"hf_id",
|
40 |
+
"creation_date",
|
41 |
+
"size",
|
42 |
+
"type",
|
43 |
+
"license",
|
44 |
+
"average",
|
45 |
+
*task_metrics,
|
46 |
+
]
|
47 |
+
]
|
48 |
+
return df
|
49 |
+
|
50 |
+
|
51 |
+
def make_language_table(df, languages):
|
52 |
+
df = (
|
53 |
+
df.groupby(["bcp_47", "task", "metric"])
|
54 |
+
.agg({"score": "mean", "model": "nunique"})
|
55 |
+
.reset_index()
|
56 |
+
)
|
57 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
58 |
+
df = df.drop(columns=["task", "metric"])
|
59 |
+
task_metrics = df["task_metric"].unique()
|
60 |
+
df = (
|
61 |
+
df.pivot(index="bcp_47", columns="task_metric", values="score")
|
62 |
+
.fillna(0)
|
63 |
+
.reset_index()
|
64 |
+
)
|
65 |
+
df["average"] = df[task_metrics].mean(axis=1)
|
66 |
+
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
67 |
+
df = df.sort_values(by="speakers", ascending=False)
|
68 |
+
df = df[
|
69 |
+
[
|
70 |
+
"bcp_47",
|
71 |
+
"language_name",
|
72 |
+
"autonym",
|
73 |
+
"speakers",
|
74 |
+
"family",
|
75 |
+
"average",
|
76 |
+
"in_benchmark",
|
77 |
+
*task_metrics,
|
78 |
+
]
|
79 |
+
]
|
80 |
+
return df
|
81 |
+
|
82 |
|
83 |
app = FastAPI()
|
84 |
|
|
|
98 |
body = await request.body()
|
99 |
data = json.loads(body)
|
100 |
selected_languages = data.get("selectedLanguages", {})
|
101 |
+
df = (
|
102 |
+
results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
103 |
+
)
|
104 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
105 |
+
language_table = make_language_table(df, languages)
|
106 |
datasets_df = pd.read_json("data/datasets.json")
|
107 |
countries = make_country_table(language_table)
|
108 |
if selected_languages:
|
109 |
# the filtering is only applied for the model table
|
110 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
111 |
+
model_table = make_model_table(df, models)
|
112 |
all_tables = {
|
113 |
"model_table": serialize(model_table),
|
114 |
"language_table": serialize(language_table),
|
evals/tables.py
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
from countries import make_country_table
|
3 |
-
|
4 |
-
make_country_table = make_country_table
|
5 |
-
|
6 |
-
|
7 |
-
def aggregate(results):
|
8 |
-
results = (
|
9 |
-
results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
10 |
-
)
|
11 |
-
lang_results = (
|
12 |
-
results.groupby(["bcp_47", "task", "metric"])
|
13 |
-
.agg({"score": "mean", "model": "nunique"})
|
14 |
-
.reset_index()
|
15 |
-
)
|
16 |
-
model_results = (
|
17 |
-
results.groupby(["model", "task", "metric"])
|
18 |
-
.agg({"score": "mean", "bcp_47": "nunique"})
|
19 |
-
.reset_index()
|
20 |
-
)
|
21 |
-
task_results = (
|
22 |
-
results.groupby(["task", "metric"])
|
23 |
-
.agg({"score": "mean", "bcp_47": "nunique", "model": "nunique"})
|
24 |
-
.reset_index()
|
25 |
-
)
|
26 |
-
return results, lang_results, model_results, task_results
|
27 |
-
|
28 |
-
|
29 |
-
def mean(lst):
|
30 |
-
return sum(lst) / len(lst) if lst else None
|
31 |
-
|
32 |
-
|
33 |
-
def make_model_table(df, models):
|
34 |
-
df["task_metric"] = df["task"] + "_" + df["metric"]
|
35 |
-
df = df.drop(columns=["task", "metric"])
|
36 |
-
task_metrics = df["task_metric"].unique()
|
37 |
-
df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
|
38 |
-
df["average"] = df[task_metrics].mean(axis=1)
|
39 |
-
df = df.sort_values(by="average", ascending=False).reset_index()
|
40 |
-
for row in [*task_metrics, "average"]:
|
41 |
-
df[row] = df[row].round(2)
|
42 |
-
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
43 |
-
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
|
44 |
-
df["rank"] = df.index + 1
|
45 |
-
df = df[
|
46 |
-
[
|
47 |
-
"rank",
|
48 |
-
"model",
|
49 |
-
"hf_id",
|
50 |
-
"creation_date",
|
51 |
-
"size",
|
52 |
-
"type",
|
53 |
-
"license",
|
54 |
-
"average",
|
55 |
-
*task_metrics,
|
56 |
-
]
|
57 |
-
]
|
58 |
-
return df
|
59 |
-
|
60 |
-
|
61 |
-
def make_language_table(df, languages):
|
62 |
-
df["task_metric"] = df["task"] + "_" + df["metric"]
|
63 |
-
df = df.drop(columns=["task", "metric"])
|
64 |
-
task_metrics = df["task_metric"].unique()
|
65 |
-
df = (
|
66 |
-
df.pivot(index="bcp_47", columns="task_metric", values="score")
|
67 |
-
.fillna(0)
|
68 |
-
.reset_index()
|
69 |
-
)
|
70 |
-
df["average"] = df[task_metrics].mean(axis=1)
|
71 |
-
for row in [*task_metrics, "average"]:
|
72 |
-
df[row] = df[row].round(2)
|
73 |
-
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
74 |
-
df = df.sort_values(by="speakers", ascending=False)
|
75 |
-
df = df[
|
76 |
-
[
|
77 |
-
"bcp_47",
|
78 |
-
"language_name",
|
79 |
-
"autonym",
|
80 |
-
"speakers",
|
81 |
-
"family",
|
82 |
-
"average",
|
83 |
-
"in_benchmark",
|
84 |
-
*task_metrics,
|
85 |
-
]
|
86 |
-
]
|
87 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|