|
from fastapi import FastAPI, Request |
|
from pydantic import BaseModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import os |
|
|
|
app = FastAPI() |
|
|
|
|
|
os.makedirs("./model_cache", exist_ok=True) |
|
|
|
|
|
model_name = "distilgpt2" |
|
try: |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache", local_files_only=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache", local_files_only=False) |
|
except OSError as e: |
|
print(f"Error loading model: {e}") |
|
print("Attempting to download model directly...") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="./model_cache") |
|
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir="./model_cache") |
|
|
|
class PromptRequest(BaseModel): |
|
prompt: str |
|
max_new_tokens: int = 50 |
|
|
|
@app.post("/generate") |
|
async def generate_text(req: PromptRequest): |
|
inputs = tokenizer(req.prompt, return_tensors="pt") |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=req.max_new_tokens, |
|
do_sample=True, |
|
temperature=0.8, |
|
top_p=0.95, |
|
) |
|
generated = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"generated_text": generated} |
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"status": "API is running", "model": model_name} |