Spaces:
Sleeping
Sleeping
File size: 14,574 Bytes
a3c4484 75d681a c1f8e27 e124052 a101f39 e124052 16b6bb4 e0656c6 a3c4484 c1f8e27 e0656c6 c1f8e27 75d681a c1f8e27 da19c93 e0656c6 75d681a c1f8e27 75d681a e124052 16b6bb4 e0656c6 16b6bb4 a3c4484 16b6bb4 a3c4484 16b6bb4 a3c4484 16b6bb4 e0656c6 16b6bb4 e0656c6 a3c4484 16b6bb4 a3c4484 e124052 16b6bb4 e0656c6 e124052 a101f39 16b6bb4 e124052 a101f39 16b6bb4 c1f8e27 75d681a da19c93 c1f8e27 da19c93 c1f8e27 ce7f029 da19c93 75d681a da19c93 ce7f029 da19c93 ce7f029 da19c93 c1f8e27 779f440 c1f8e27 e0656c6 75d681a e0656c6 75d681a e0656c6 75d681a d024027 75d681a d024027 75d681a d024027 75d681a d024027 75d681a d024027 75d681a d024027 75d681a d024027 75d681a a3c4484 a101f39 856df6f e124052 856df6f e124052 a101f39 856df6f e124052 16b6bb4 856df6f e124052 16b6bb4 e0656c6 16b6bb4 e0656c6 a101f39 c1f8e27 da19c93 779f440 c1f8e27 779f440 ce7f029 779f440 ce7f029 779f440 c1f8e27 75d681a c1f8e27 779f440 da19c93 779f440 da19c93 c1f8e27 e0656c6 75d681a e0656c6 75d681a e0656c6 75d681a 16b6bb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import gradio as gr
import pandas as pd
from glob import glob
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.colors import ListedColormap, BoundaryNorm
from glob import glob
import os
# Load text benchmark results
csv_results = glob("results/*.pkl")
# Load vision benchmark results
vision_results = glob("results-vision/*.pkl")
# Load CoT text benchmark results
cot_text_results = glob("results-cot/*.pkl")
# Load CoT vision benchmark results
# cot_vision_results = glob("results-vision-CoT/*.pkl")
# Function to load data, add model type and name
def load_data(files, model_type):
data = []
for file in files:
df = pd.read_pickle(file)
df["Model Type"] = model_type
df["Model Name"] = file.split("/")[-1].replace(".pkl", "")
data.append(df)
return pd.concat(data, ignore_index=True)
# Load and label all data
data = load_data(csv_results, "Text Only")
vision_data = load_data(vision_results, "Vision")
cot_text_data = load_data(cot_text_results, "CoT Text Only")
# cot_vision_data = load_data(cot_vision_results, "CoT Vision")
# Combine all data into a single DataFrame
all_data = pd.concat([data, vision_data, cot_text_data], ignore_index=True)
all_model_names = all_data["Model Name"].unique()
all_text_only_model_names = list(
all_data[all_data["Model Type"] == "Text Only"]["Model Name"].unique()
)
all_cot_text_only_models = list(
all_data[all_data["Model Type"] == "CoT Text Only"]["Model Name"].unique()
)
text_only_filtered_raw = None
text_only_filtered_raw_cot = None
## Continue with the cold code --
# TODO: Update me to read from all_data for later
# Load the csv files into a dict with keys being name of the file and values being the data
data = {file: pd.read_pickle(file) for file in csv_results}
# Load the vision files into a dict
vision_data = {file: pd.read_pickle(file) for file in vision_results}
# Load the CoT text files into a dict
cot_text_data = {file: pd.read_pickle(file) for file in cot_text_results}
# Load the CoT vision files into a dict
# cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}
def calculate_accuracy(df):
return df["parsed_judge_response"].mean() * 100
def accuracy_breakdown(df):
# 4 level accuracy
return (df.groupby("difficulty_level")["parsed_judge_response"].mean() * 100).values
# Define the column names with icons
headers_with_icons = [
"π€ Model Name",
"β Overall",
"π Level 1",
"π Level 2",
"π Level 3",
"π¬ Level 4",
]
column_names = [
"Model Name",
"Overall Accuracy",
"Level 1 Accuracy",
"Level 2 Accuracy",
"Level 3 Accuracy",
"Level 4 Accuracy",
]
# Function to process data
def process_data(data):
data_for_df = []
for file, df in data.items():
overall_accuracy = round(calculate_accuracy(df), 2)
breakdown_accuracy = [round(acc, 2) for acc in accuracy_breakdown(df)]
model_name = file.split("/")[-1].replace(".pkl", "")
data_for_df.append([model_name, overall_accuracy] + breakdown_accuracy)
return data_for_df
# Process all data
text_data_for_df = process_data(data)
vision_data_for_df = process_data(vision_data)
cot_text_data_for_df = process_data(cot_text_data)
# cot_vision_data_for_df = process_data(cot_vision_data)
# Create DataFrames
accuracy_df = pd.DataFrame(text_data_for_df, columns=column_names)
vision_accuracy_df = pd.DataFrame(vision_data_for_df, columns=column_names)
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
# cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)
# Function to finalize DataFrame
def finalize_df(df):
df = df.round(1) # Round to one decimal place
df = df.applymap(lambda x: f"{x:.1f}" if isinstance(x, (int, float)) else x)
df.columns = headers_with_icons
df.sort_values(by="β Overall", ascending=False, inplace=True)
return df
# Finalize all DataFrames
accuracy_df = finalize_df(accuracy_df)
vision_accuracy_df = finalize_df(vision_accuracy_df)
cot_text_accuracy_df = finalize_df(cot_text_accuracy_df)
# cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)
def load_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
return heatmap_image
def load_vision_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results-vision/{evt.value}.jpg")
return heatmap_image
def load_cot_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results-cot/{evt.value}.jpg")
return heatmap_image
def load_cot_vision_heatmap(evt: gr.SelectData):
heatmap_image = gr.Image(f"results-vision-CoT/{evt.value}.jpg")
return heatmap_image
def calculate_order_by_first_substring(selected_models):
global text_only_filtered_raw
first_columns = all_data[all_data["substring_index"] == 1]
query_ids_df = first_columns[first_columns["Model Type"] == "Text Only"]
query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
query_ids_df = query_ids_df.groupby("query_id").filter(
lambda x: x["parsed_judge_response"].eq(1).all()
)
fsm_ids = query_ids_df.fsm_id.unique()
text_only = all_data[all_data["Model Type"] == "Text Only"]
text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
text_only_filtered_raw = text_only_filtered.copy()
query_ids = text_only_filtered.query_id.unique()
text_only_filtered = (
text_only_filtered.groupby(["Model Name"])["parsed_judge_response"]
.mean()
.reset_index()
)
text_only_filtered["Accuracy"] = text_only_filtered["parsed_judge_response"] * 100
text_only_filtered.drop("parsed_judge_response", axis=1, inplace=True)
text_only_filtered["Accuracy"] = text_only_filtered["Accuracy"].apply(
lambda x: round(x, 2)
)
text_only_filtered.sort_values("Accuracy", ascending=False, inplace=True)
number_of_queries = len(query_ids)
number_of_fsms = len(fsm_ids)
return text_only_filtered, number_of_queries, number_of_fsms
def calculate_order_by_first_substring_cot(selected_models):
global text_only_filtered_raw_cot
first_columns = all_data[all_data["substring_index"] == 1]
query_ids_df = first_columns[first_columns["Model Type"] == "CoT Text Only"]
query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
query_ids_df = query_ids_df.groupby("query_id").filter(
lambda x: x["parsed_judge_response"].eq(1).all()
)
fsm_ids = query_ids_df.fsm_id.unique()
text_only = all_data[all_data["Model Type"] == "CoT Text Only"]
text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
text_only_filtered_raw_cot = text_only_filtered.copy()
query_ids = text_only_filtered.query_id.unique()
text_only_filtered = (
text_only_filtered.groupby(["Model Name"])["parsed_judge_response"]
.mean()
.reset_index()
)
text_only_filtered["Accuracy"] = text_only_filtered["parsed_judge_response"] * 100
text_only_filtered.drop("parsed_judge_response", axis=1, inplace=True)
text_only_filtered["Accuracy"] = text_only_filtered["Accuracy"].apply(
lambda x: round(x, 2)
)
text_only_filtered.sort_values("Accuracy", ascending=False, inplace=True)
number_of_queries = len(query_ids)
number_of_fsms = len(fsm_ids)
return text_only_filtered, number_of_queries, number_of_fsms
def generate_heatmap_for_specific_model(model_name):
global text_only_filtered_raw
cmap = ListedColormap(["lightblue", "red", "green"])
bounds = [-1.5, -0.5, 0.5, 1.5]
norm = BoundaryNorm(bounds, cmap.N)
model_df = text_only_filtered_raw[
text_only_filtered_raw["Model Name"] == model_name
]
model_df["fsm_info"] = model_df.apply(
lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
)
model_df = model_df.sort_values(by=["num_states", "num_alphabet"])
pivot_df = (
model_df.pivot_table(
index="fsm_info",
columns="substring_index",
values="parsed_judge_response",
aggfunc="first",
)
.fillna(-1)
.astype(float)
)
# Dynamically adjust figure size
num_rows, num_cols = pivot_df.shape
fig_width = max(12, num_cols * 0.5) # Adjust width per column
fig_height = max(8, num_rows * 0.4) # Adjust height per row
fig, ax = plt.subplots(figsize=(fig_width, fig_height))
sns.heatmap(
pivot_df,
cmap=cmap,
linewidths=1,
linecolor="black",
norm=norm,
cbar=False,
square=True,
ax=ax,
)
plt.title(f"Heatmap for Model: {model_name}", fontsize=12)
plt.xlabel("Substring Index")
plt.ylabel("FSM (States, Alphabet)")
plt.xticks(rotation=45)
sns.despine(ax=ax, top=True, right=True, left=True, bottom=True)
return fig
def generate_heatmap_for_specific_model_cot(model_name):
global text_only_filtered_raw_cot
cmap = ListedColormap(["lightblue", "red", "green"])
bounds = [-1.5, -0.5, 0.5, 1.5]
norm = BoundaryNorm(bounds, cmap.N)
model_df = text_only_filtered_raw_cot[
text_only_filtered_raw_cot["Model Name"] == model_name
]
model_df["fsm_info"] = model_df.apply(
lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
)
model_df = model_df.sort_values(by=["num_states", "num_alphabet"])
pivot_df = (
model_df.pivot_table(
index="fsm_info",
columns="substring_index",
values="parsed_judge_response",
aggfunc="first",
)
.fillna(-1)
.astype(float)
)
# Dynamically adjust figure size
num_rows, num_cols = pivot_df.shape
fig_width = max(12, num_cols * 0.5) # Adjust width per column
fig_height = max(8, num_rows * 0.4) # Adjust height per row
fig, ax = plt.subplots(figsize=(fig_width, fig_height))
sns.heatmap(
pivot_df,
cmap=cmap,
linewidths=1,
linecolor="black",
norm=norm,
cbar=False,
square=True,
ax=ax,
)
plt.title(f"Heatmap for Model: {model_name}", fontsize=12)
plt.xlabel("Substring Index")
plt.ylabel("FSM (States, Alphabet)")
plt.xticks(rotation=45)
sns.despine(ax=ax, top=True, right=True, left=True, bottom=True)
return fig
def show_constraint_heatmap(evt: gr.SelectData):
model_name = evt.value
return generate_heatmap_for_specific_model(model_name)
def show_constraint_heatmap_cot(evt: gr.SelectData):
model_name = evt.value
return generate_heatmap_for_specific_model_cot(model_name)
with gr.Blocks() as demo:
gr.Markdown("# FSM Benchmark Leaderboard")
with gr.Tab("Text-only Benchmark"):
gr.Markdown("# Text-only Leaderboard")
leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons)
gr.Markdown("## Heatmap")
heatmap_image = gr.Image(label="", show_label=False)
leader_board.select(fn=load_heatmap, outputs=[heatmap_image])
with gr.Tab("Vision Benchmark"):
gr.Markdown("# Vision Benchmark Leaderboard")
leader_board_vision = gr.Dataframe(
vision_accuracy_df, headers=headers_with_icons
)
gr.Markdown("## Heatmap")
heatmap_image_vision = gr.Image(label="", show_label=False)
leader_board_vision.select(
fn=load_vision_heatmap, outputs=[heatmap_image_vision]
)
with gr.Tab("Text-only Benchmark (CoT)"):
gr.Markdown("# Text-only Leaderboard (CoT)")
cot_leader_board_text = gr.Dataframe(
cot_text_accuracy_df, headers=headers_with_icons
)
gr.Markdown("## Heatmap")
cot_heatmap_image_text = gr.Image(label="", show_label=False)
cot_leader_board_text.select(
fn=load_cot_heatmap, outputs=[cot_heatmap_image_text]
)
# with gr.Tab("Vision Benchmark (CoT)"):
# gr.Markdown("# Vision Benchmark Leaderboard (CoT)")
# cot_leader_board_vision = gr.Dataframe(
# cot_vision_accuracy_df, headers=headers_with_icons
# )
# gr.Markdown("## Heatmap")
# cot_heatmap_image_vision = gr.Image(label="", show_label=False)
# cot_leader_board_vision.select(
# fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
# )
with gr.Tab("Constraint Text-only Results"):
gr.Markdown("## Constraint Text-only Leaderboard by first substring")
included_models = gr.CheckboxGroup(
label="Models to include",
choices=all_text_only_model_names,
value=all_text_only_model_names,
interactive=True,
)
with gr.Row():
number_of_queries = gr.Textbox(label="Number of included queries")
number_of_fsms = gr.Textbox(label="Number of included FSMs")
constrained_leader_board_text = gr.Dataframe()
constrained_leader_board_plot = gr.Plot()
included_models.select(
fn=calculate_order_by_first_substring,
inputs=[included_models],
outputs=[constrained_leader_board_text, number_of_queries, number_of_fsms],
queue=True,
)
with gr.Tab("Constraint Text-only Results (CoT)"):
gr.Markdown("## Constraint Text-only Leaderboard by first substrin (CoT)")
included_models_cot = gr.CheckboxGroup(
label="Models to include",
choices=all_cot_text_only_models,
value=all_cot_text_only_models,
interactive=True,
)
with gr.Row():
number_of_queries_cot = gr.Textbox(label="Number of included queries")
number_of_fsms_cot = gr.Textbox(label="Number of included FSMs")
constrained_leader_board_text_cot = gr.Dataframe()
constrained_leader_board_plot_cot = gr.Plot()
included_models_cot.select(
fn=calculate_order_by_first_substring_cot,
inputs=[included_models_cot],
outputs=[
constrained_leader_board_text_cot,
number_of_queries_cot,
number_of_fsms_cot,
],
queue=True,
)
constrained_leader_board_text.select(
fn=show_constraint_heatmap, outputs=[constrained_leader_board_plot]
)
constrained_leader_board_text_cot.select(
fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
)
demo.launch()
|