taesiri commited on
Commit
779f440
·
1 Parent(s): da19c93
Files changed (1) hide show
  1. app.py +13 -16
app.py CHANGED
@@ -146,29 +146,16 @@ def calculate_order_by_first_substring(selected_models):
146
  query_ids_df = first_columns[first_columns["Model Type"] == "Text Only"]
147
  query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
148
 
149
- print(len(query_ids_df))
150
-
151
  query_ids_df = query_ids_df.groupby("query_id").filter(
152
  lambda x: x["parsed_judge_response"].eq(1).all()
153
  )
154
 
155
- print(len(query_ids_df))
156
-
157
  query_ids = query_ids_df.query_id.unique()
158
  fsm_ids = query_ids_df.fsm_id.unique()
159
- print(
160
- "fsm_ids",
161
- len(fsm_ids),
162
- "Total of 25 FSM is solvable by everything on the first substring",
163
- )
164
 
165
  text_only = all_data[all_data["Model Type"] == "Text Only"]
166
  text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
167
 
168
- print(
169
- f"Number of query_ids from text_only_filtered: {len(text_only_filtered.query_id.unique())}"
170
- )
171
-
172
  text_only_filtered = (
173
  text_only_filtered.groupby(["Model Name"])["parsed_judge_response"]
174
  .mean()
@@ -182,7 +169,10 @@ def calculate_order_by_first_substring(selected_models):
182
  )
183
  text_only_filtered.sort_values("Accuracy", ascending=False, inplace=True)
184
 
185
- return text_only_filtered
 
 
 
186
 
187
 
188
  with gr.Blocks() as demo:
@@ -233,13 +223,20 @@ with gr.Blocks() as demo:
233
  label="Models to include",
234
  choices=all_text_only_model_names,
235
  value=all_text_only_model_names,
 
236
  )
 
 
 
 
 
237
  constrained_leader_board_text = gr.Dataframe()
238
 
239
- included_models.input(
240
  fn=calculate_order_by_first_substring,
241
  inputs=[included_models],
242
- outputs=[constrained_leader_board_text],
 
243
  )
244
 
245
  demo.launch()
 
146
  query_ids_df = first_columns[first_columns["Model Type"] == "Text Only"]
147
  query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
148
 
 
 
149
  query_ids_df = query_ids_df.groupby("query_id").filter(
150
  lambda x: x["parsed_judge_response"].eq(1).all()
151
  )
152
 
 
 
153
  query_ids = query_ids_df.query_id.unique()
154
  fsm_ids = query_ids_df.fsm_id.unique()
 
 
 
 
 
155
 
156
  text_only = all_data[all_data["Model Type"] == "Text Only"]
157
  text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
158
 
 
 
 
 
159
  text_only_filtered = (
160
  text_only_filtered.groupby(["Model Name"])["parsed_judge_response"]
161
  .mean()
 
169
  )
170
  text_only_filtered.sort_values("Accuracy", ascending=False, inplace=True)
171
 
172
+ number_of_queries = len(query_ids)
173
+ number_of_fsms = len(fsm_ids)
174
+
175
+ return text_only_filtered, number_of_queries, number_of_fsms
176
 
177
 
178
  with gr.Blocks() as demo:
 
223
  label="Models to include",
224
  choices=all_text_only_model_names,
225
  value=all_text_only_model_names,
226
+ interactive=True,
227
  )
228
+ with gr.Row():
229
+ number_of_queries = gr.Textbox(label="Number of queries to include")
230
+
231
+ number_of_fsms = gr.Textbox(label="Number of FSMs to include")
232
+
233
  constrained_leader_board_text = gr.Dataframe()
234
 
235
+ included_models.select(
236
  fn=calculate_order_by_first_substring,
237
  inputs=[included_models],
238
+ outputs=[constrained_leader_board_text, number_of_queries, number_of_fsms],
239
+ queue=True,
240
  )
241
 
242
  demo.launch()