File size: 18,524 Bytes
a3c4484
 
 
75d681a
 
 
 
 
c1f8e27
0ec0046
 
 
 
 
 
 
e124052
c8b7025
 
e124052
 
16b6bb4
 
 
e0656c6
a3c4484
0ec0046
c1f8e27
 
 
 
 
 
 
 
 
 
 
 
c8b7025
5b905b8
c1f8e27
 
e0656c6
c1f8e27
 
5b905b8
c1f8e27
da19c93
 
 
 
e0656c6
 
 
 
 
75d681a
 
c1f8e27
 
 
 
75d681a
e124052
c8b7025
e124052
 
16b6bb4
 
 
e0656c6
16b6bb4
c8b7025
 
a3c4484
0ec0046
 
 
 
 
 
 
 
 
 
 
 
a3c4484
 
 
16b6bb4
a3c4484
 
 
 
16b6bb4
a3c4484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec0046
16b6bb4
 
 
 
 
 
 
 
 
 
 
 
 
c8b7025
 
16b6bb4
 
e0656c6
16b6bb4
 
 
c8b7025
16b6bb4
 
e0656c6
a3c4484
0ec0046
16b6bb4
 
 
 
 
 
eb0fb40
 
 
 
 
 
 
16b6bb4
a3c4484
e124052
16b6bb4
 
c8b7025
16b6bb4
 
e0656c6
e124052
 
a101f39
 
 
 
16b6bb4
c8b7025
 
 
 
 
e124052
 
 
a101f39
16b6bb4
 
 
 
 
 
 
 
 
 
 
c1f8e27
75d681a
da19c93
 
 
c1f8e27
da19c93
 
 
c1f8e27
ce7f029
da19c93
 
 
75d681a
da19c93
ce7f029
da19c93
 
 
 
 
ce7f029
da19c93
 
 
 
 
 
 
c1f8e27
779f440
 
 
 
c1f8e27
 
e0656c6
75d681a
e0656c6
 
 
 
 
 
 
 
 
 
 
 
75d681a
e0656c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75d681a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d024027
 
 
 
 
 
75d681a
 
 
 
 
 
 
 
 
 
d024027
75d681a
 
 
 
d024027
 
75d681a
 
 
 
d024027
75d681a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d024027
 
 
 
 
 
75d681a
 
 
 
 
 
 
 
 
 
d024027
75d681a
 
 
 
d024027
 
75d681a
 
 
0ec0046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b905b8
0ec0046
 
 
75d681a
 
 
 
 
 
 
 
 
 
0ec0046
 
 
 
 
a3c4484
a101f39
05e4334
c8b7025
 
 
 
 
 
5b905b8
e124052
16b6bb4
 
 
856df6f
e124052
16b6bb4
 
 
 
5b905b8
e0656c6
16b6bb4
 
 
 
 
 
 
 
 
e0656c6
 
 
 
 
 
 
 
 
 
a101f39
c1f8e27
 
 
da19c93
 
 
779f440
c1f8e27
779f440
ce7f029
779f440
ce7f029
779f440
c1f8e27
75d681a
c1f8e27
779f440
da19c93
 
779f440
 
da19c93
c1f8e27
5b905b8
e0656c6
 
 
 
 
 
 
 
 
 
 
 
75d681a
e0656c6
5b905b8
0ec0046
 
 
 
 
 
5b905b8
05e4334
 
 
 
 
 
 
 
e0656c6
 
 
75d681a
 
 
 
 
e0656c6
 
 
75d681a
 
 
 
 
 
 
 
0ec0046
 
 
 
16b6bb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import gradio as gr
import pandas as pd
from glob import glob
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.colors import ListedColormap, BoundaryNorm
from glob import glob
import os


import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.colors import ListedColormap, BoundaryNorm
import pandas as pd


# Load text benchmark results
noncot_results = glob("results/*.pkl")
noncot_results_qwen = glob("results_qwen/*.pkl")
# Load vision benchmark results
vision_results = glob("results-vision/*.pkl")
# Load CoT text benchmark results
cot_text_results = glob("results-cot/*.pkl")
# Load CoT vision benchmark results
# cot_vision_results = glob("results-vision-CoT/*.pkl")


# Function to load data, add model type and name
def load_data(files, model_type):
    data = []
    for file in files:
        df = pd.read_pickle(file)
        df["Model Type"] = model_type
        df["Model Name"] = file.split("/")[-1].replace(".pkl", "")
        data.append(df)
    return pd.concat(data, ignore_index=True)


# Load and label all data
data = load_data(noncot_results, "Text Only")
data_qwen = load_data(noncot_results_qwen, "Text Only")
vision_data = load_data(vision_results, "Vision")
cot_text_data = load_data(cot_text_results, "CoT Text Only")
# cot_vision_data = load_data(cot_vision_results, "CoT Vision")

# Combine all data into a single DataFrame
all_data = pd.concat([data_qwen, vision_data, cot_text_data], ignore_index=True)

all_model_names = all_data["Model Name"].unique()
all_text_only_model_names = list(
    all_data[all_data["Model Type"] == "Text Only"]["Model Name"].unique()
)
all_cot_text_only_models = list(
    all_data[all_data["Model Type"] == "CoT Text Only"]["Model Name"].unique()
)


text_only_filtered_raw = None
text_only_filtered_raw_cot = None

## Continue with the cold code --
# TODO: Update me to read from all_data for later


# Load the csv files into a dict with keys being name of the file and values being the data
data = {file: pd.read_pickle(file) for file in noncot_results}
# Load the vision files into a dict
vision_data = {file: pd.read_pickle(file) for file in vision_results}
# Load the CoT text files into a dict
cot_text_data = {file: pd.read_pickle(file) for file in cot_text_results}
# Load the CoT vision files into a dict
# cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}

data_qwen = {file: pd.read_pickle(file) for file in noncot_results_qwen}


intersection_df = pd.read_pickle(
    "./intersection_results/gpt-3.5-judge-by_Qwen_5times_intersection_subset_1.pkl"
)
# accuracy for each model
intersection_df_acc = (
    intersection_df.groupby("model_name")["parsed_judge_response"].mean().reset_index()
)
intersection_df_acc["Accuracy"] = intersection_df_acc["parsed_judge_response"] * 100
intersection_df_acc.drop("parsed_judge_response", axis=1, inplace=True)
intersection_df_acc.sort_values("Accuracy", ascending=False, inplace=True)


def calculate_accuracy(df):
    return df["parsed_judge_response"].mean() * 100


def accuracy_breakdown(df):
    # 4 level accuracy
    return (df.groupby("difficulty_level")["parsed_judge_response"].mean() * 100).values


# Define the column names with icons
headers_with_icons = [
    "πŸ€– Model Name",
    "⭐ Overall",
    "πŸ“ˆ Level 1",
    "πŸ” Level 2",
    "πŸ“˜ Level 3",
    "πŸ”¬ Level 4",
]

column_names = [
    "Model Name",
    "Overall Accuracy",
    "Level 1 Accuracy",
    "Level 2 Accuracy",
    "Level 3 Accuracy",
    "Level 4 Accuracy",
]


# Function to process data
def process_data(data):
    data_for_df = []
    for file, df in data.items():
        overall_accuracy = round(calculate_accuracy(df), 2)
        breakdown_accuracy = [round(acc, 2) for acc in accuracy_breakdown(df)]
        model_name = file.split("/")[-1].replace(".pkl", "")
        data_for_df.append([model_name, overall_accuracy] + breakdown_accuracy)
    return data_for_df


# Process all data
text_data_for_df = process_data(data)
text_data_for_df_qwen = process_data(data_qwen)

vision_data_for_df = process_data(vision_data)
cot_text_data_for_df = process_data(cot_text_data)
# cot_vision_data_for_df = process_data(cot_vision_data)

# Create DataFrames
accuracy_df = pd.DataFrame(text_data_for_df, columns=column_names)
accuracy_df_qwen = pd.DataFrame(text_data_for_df_qwen, columns=column_names)
vision_accuracy_df = pd.DataFrame(vision_data_for_df, columns=column_names)
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
# cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)


# Function to finalize DataFrame
def finalize_df(df):
    df = df.round(1)  # Round to one decimal place
    df = df.applymap(lambda x: f"{x:.1f}" if isinstance(x, (int, float)) else x)
    df.columns = headers_with_icons
    df.sort_values(by="⭐ Overall", ascending=False, inplace=True)
    # add a new column with the order (index)
    df["#"] = range(1, len(df) + 1)
    # bring rank to the first column
    cols = df.columns.tolist()
    cols = cols[-1:] + cols[:-1]
    df = df[cols]

    return df


# Finalize all DataFrames
accuracy_df = finalize_df(accuracy_df)
accuracy_df_qwen = finalize_df(accuracy_df_qwen)
vision_accuracy_df = finalize_df(vision_accuracy_df)
cot_text_accuracy_df = finalize_df(cot_text_accuracy_df)
# cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)


def load_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results/{evt.value}.jpg")
    return heatmap_image


def load_heatmap_qwen(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results_qwen/{evt.value}.jpg")
    return heatmap_image


def load_vision_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results-vision/{evt.value}.jpg")
    return heatmap_image


def load_cot_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results-cot/{evt.value}.jpg")
    return heatmap_image


def load_cot_vision_heatmap(evt: gr.SelectData):
    heatmap_image = gr.Image(f"results-vision-CoT/{evt.value}.jpg")
    return heatmap_image


def calculate_order_by_first_substring(selected_models):
    global text_only_filtered_raw
    first_columns = all_data[all_data["substring_index"] == 1]
    query_ids_df = first_columns[first_columns["Model Type"] == "Text Only"]
    query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]

    query_ids_df = query_ids_df.groupby("query_id").filter(
        lambda x: x["parsed_judge_response"].eq(1).all()
    )

    fsm_ids = query_ids_df.fsm_id.unique()

    text_only = all_data[all_data["Model Type"] == "Text Only"]
    text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
    text_only_filtered_raw = text_only_filtered.copy()

    query_ids = text_only_filtered.query_id.unique()
    text_only_filtered = (
        text_only_filtered.groupby(["Model Name"])["parsed_judge_response"]
        .mean()
        .reset_index()
    )

    text_only_filtered["Accuracy"] = text_only_filtered["parsed_judge_response"] * 100
    text_only_filtered.drop("parsed_judge_response", axis=1, inplace=True)

    text_only_filtered["Accuracy"] = text_only_filtered["Accuracy"].apply(
        lambda x: round(x, 2)
    )
    text_only_filtered.sort_values("Accuracy", ascending=False, inplace=True)

    number_of_queries = len(query_ids)
    number_of_fsms = len(fsm_ids)

    return text_only_filtered, number_of_queries, number_of_fsms


def calculate_order_by_first_substring_cot(selected_models):
    global text_only_filtered_raw_cot
    first_columns = all_data[all_data["substring_index"] == 1]
    query_ids_df = first_columns[first_columns["Model Type"] == "CoT Text Only"]
    query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]

    query_ids_df = query_ids_df.groupby("query_id").filter(
        lambda x: x["parsed_judge_response"].eq(1).all()
    )

    fsm_ids = query_ids_df.fsm_id.unique()

    text_only = all_data[all_data["Model Type"] == "CoT Text Only"]
    text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
    text_only_filtered_raw_cot = text_only_filtered.copy()

    query_ids = text_only_filtered.query_id.unique()
    text_only_filtered = (
        text_only_filtered.groupby(["Model Name"])["parsed_judge_response"]
        .mean()
        .reset_index()
    )

    text_only_filtered["Accuracy"] = text_only_filtered["parsed_judge_response"] * 100
    text_only_filtered.drop("parsed_judge_response", axis=1, inplace=True)

    text_only_filtered["Accuracy"] = text_only_filtered["Accuracy"].apply(
        lambda x: round(x, 2)
    )
    text_only_filtered.sort_values("Accuracy", ascending=False, inplace=True)

    number_of_queries = len(query_ids)
    number_of_fsms = len(fsm_ids)

    return text_only_filtered, number_of_queries, number_of_fsms


def generate_heatmap_for_specific_model(model_name):
    global text_only_filtered_raw

    cmap = ListedColormap(["lightblue", "red", "green"])
    bounds = [-1.5, -0.5, 0.5, 1.5]
    norm = BoundaryNorm(bounds, cmap.N)

    model_df = text_only_filtered_raw[
        text_only_filtered_raw["Model Name"] == model_name
    ]
    model_df["fsm_info"] = model_df.apply(
        lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
    )
    model_df = model_df.sort_values(by=["num_states", "num_alphabet"])

    pivot_df = (
        model_df.pivot_table(
            index="fsm_info",
            columns="substring_index",
            values="parsed_judge_response",
            aggfunc="first",
        )
        .fillna(-1)
        .astype(float)
    )

    # Dynamically adjust figure size
    num_rows, num_cols = pivot_df.shape
    fig_width = max(12, num_cols * 0.5)  # Adjust width per column
    fig_height = max(8, num_rows * 0.4)  # Adjust height per row

    fig, ax = plt.subplots(figsize=(fig_width, fig_height))
    sns.heatmap(
        pivot_df,
        cmap=cmap,
        linewidths=1,
        linecolor="black",
        norm=norm,
        cbar=False,
        square=True,
        ax=ax,
    )
    plt.title(f"Heatmap for Model: {model_name}", fontsize=12)
    plt.xlabel("Substring Index")
    plt.ylabel("FSM (States, Alphabet)")
    plt.xticks(rotation=45)

    sns.despine(ax=ax, top=True, right=True, left=True, bottom=True)

    return fig


def generate_heatmap_for_specific_model_cot(model_name):
    global text_only_filtered_raw_cot

    cmap = ListedColormap(["lightblue", "red", "green"])
    bounds = [-1.5, -0.5, 0.5, 1.5]
    norm = BoundaryNorm(bounds, cmap.N)

    model_df = text_only_filtered_raw_cot[
        text_only_filtered_raw_cot["Model Name"] == model_name
    ]
    model_df["fsm_info"] = model_df.apply(
        lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
    )
    model_df = model_df.sort_values(by=["num_states", "num_alphabet"])

    pivot_df = (
        model_df.pivot_table(
            index="fsm_info",
            columns="substring_index",
            values="parsed_judge_response",
            aggfunc="first",
        )
        .fillna(-1)
        .astype(float)
    )

    # Dynamically adjust figure size
    num_rows, num_cols = pivot_df.shape
    fig_width = max(12, num_cols * 0.5)  # Adjust width per column
    fig_height = max(8, num_rows * 0.4)  # Adjust height per row

    fig, ax = plt.subplots(figsize=(fig_width, fig_height))
    sns.heatmap(
        pivot_df,
        cmap=cmap,
        linewidths=1,
        linecolor="black",
        norm=norm,
        cbar=False,
        square=True,
        ax=ax,
    )
    plt.title(f"Heatmap for Model: {model_name}", fontsize=12)
    plt.xlabel("Substring Index")
    plt.ylabel("FSM (States, Alphabet)")
    plt.xticks(rotation=45)

    sns.despine(ax=ax, top=True, right=True, left=True, bottom=True)

    return fig


def generate_heatmap_for_intersection_model(model_name):
    global intersection_df

    cmap = ListedColormap(["lightblue", "red", "green"])
    bounds = [-1.5, -0.5, 0.5, 1.5]
    norm = BoundaryNorm(bounds, cmap.N)

    # Filter for a specific model
    model_df = intersection_df[intersection_df["model_name"] == model_name].copy()

    if model_df.empty:
        print(f"No data found for model {model_name}. Skipping heatmap generation.")
        return None

    model_df["fsm_info"] = model_df.apply(
        lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
    )
    model_df = model_df.sort_values(by=["num_states", "num_alphabet"])

    pivot_df = (
        model_df.pivot_table(
            index="fsm_info",
            columns="substring_index",
            values="parsed_judge_response",
            aggfunc="first",
        )
        .fillna(-1)
        .astype(float)
    )

    # Dynamically adjust figure size
    num_rows, num_cols = pivot_df.shape
    fig_width = max(12, num_cols * 0.5)
    fig_height = max(8, num_rows * 0.4)

    fig, ax = plt.subplots(figsize=(fig_width, fig_height))
    sns.heatmap(
        pivot_df,
        cmap=cmap,
        linewidths=1,
        linecolor="black",
        norm=norm,
        cbar=False,
        square=True,
        ax=ax,
    )
    plt.title(f"Heatmap for Model: {model_name}", fontsize=12)
    plt.xlabel("Substring Index")
    plt.ylabel("FSM (States, Alphabet)")
    plt.xticks(rotation=45)

    sns.despine(ax=ax, top=True, right=True, left=True, bottom=True)

    plt.close(fig)
    return fig


def show_constraint_heatmap(evt: gr.SelectData):
    model_name = evt.value
    return generate_heatmap_for_specific_model(model_name)


def show_constraint_heatmap_cot(evt: gr.SelectData):
    model_name = evt.value
    return generate_heatmap_for_specific_model_cot(model_name)


def show_intersection_heatmap(evt: gr.SelectData):
    model_name = evt.value
    return generate_heatmap_for_intersection_model(model_name)


with gr.Blocks() as demo:
    gr.Markdown("# FSM Benchmark Leaderboard")
    with gr.Tab("Text-only Benchmark"):
        gr.Markdown("# Text-only Leaderboard (Judged by Qwen)")
        leader_board = gr.Dataframe(accuracy_df_qwen, headers=headers_with_icons)
        gr.Markdown("## Heatmap")
        heatmap_image_qwen = gr.Image(label="", show_label=False)
        leader_board.select(fn=load_heatmap_qwen, outputs=[heatmap_image_qwen])

    with gr.Tab("Vision Benchmark", visible=False):
        gr.Markdown("# Vision Benchmark Leaderboard")
        leader_board_vision = gr.Dataframe(
            vision_accuracy_df, headers=headers_with_icons
        )
        gr.Markdown("## Heatmap")
        heatmap_image_vision = gr.Image(label="", show_label=False)
        leader_board_vision.select(
            fn=load_vision_heatmap, outputs=[heatmap_image_vision]
        )

    with gr.Tab("Text-only Benchmark (CoT)", visible=False):
        gr.Markdown("# Text-only Leaderboard (CoT)")
        cot_leader_board_text = gr.Dataframe(
            cot_text_accuracy_df, headers=headers_with_icons
        )
        gr.Markdown("## Heatmap")
        cot_heatmap_image_text = gr.Image(label="", show_label=False)
        cot_leader_board_text.select(
            fn=load_cot_heatmap, outputs=[cot_heatmap_image_text]
        )

    # with gr.Tab("Vision Benchmark (CoT)"):
    #     gr.Markdown("# Vision Benchmark Leaderboard (CoT)")
    #     cot_leader_board_vision = gr.Dataframe(
    #         cot_vision_accuracy_df, headers=headers_with_icons
    #     )
    #     gr.Markdown("## Heatmap")
    #     cot_heatmap_image_vision = gr.Image(label="", show_label=False)
    #     cot_leader_board_vision.select(
    #         fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
    #     )

    with gr.Tab("Constraint Text-only Results"):
        gr.Markdown("## Constraint Text-only Leaderboard by first substring")
        included_models = gr.CheckboxGroup(
            label="Models to include",
            choices=all_text_only_model_names,
            value=all_text_only_model_names,
            interactive=True,
        )
        with gr.Row():
            number_of_queries = gr.Textbox(label="Number of included queries")

            number_of_fsms = gr.Textbox(label="Number of included  FSMs")

        constrained_leader_board_text = gr.Dataframe()
        constrained_leader_board_plot = gr.Plot()

    included_models.select(
        fn=calculate_order_by_first_substring,
        inputs=[included_models],
        outputs=[constrained_leader_board_text, number_of_queries, number_of_fsms],
        queue=True,
    )

    with gr.Tab("Constraint Text-only Results (CoT)", visible=False):
        gr.Markdown("## Constraint Text-only Leaderboard by first substrin (CoT)")
        included_models_cot = gr.CheckboxGroup(
            label="Models to include",
            choices=all_cot_text_only_models,
            value=all_cot_text_only_models,
            interactive=True,
        )
        with gr.Row():
            number_of_queries_cot = gr.Textbox(label="Number of included queries")
            number_of_fsms_cot = gr.Textbox(label="Number of included  FSMs")

        constrained_leader_board_text_cot = gr.Dataframe()
        constrained_leader_board_plot_cot = gr.Plot()

    with gr.Tab("Majority Vote (Subset 1)", visible=False):
        gr.Markdown("## Majority Vote (Subset 1)")
        intersection_leader_board = gr.Dataframe(
            intersection_df_acc, headers=headers_with_icons
        )
        heatmap_image = gr.Plot(label="Model Heatmap")

    with gr.Tab("Text-only Benchmark (deprecated)", visible=False):
        gr.Markdown("# Text-only Leaderboard")
        leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons)
        gr.Markdown("## Heatmap")
        heatmap_image = gr.Image(label="", show_label=False)
        leader_board.select(fn=load_heatmap, outputs=[heatmap_image])

    # ============ Callbacks ============

    included_models_cot.select(
        fn=calculate_order_by_first_substring_cot,
        inputs=[included_models_cot],
        outputs=[
            constrained_leader_board_text_cot,
            number_of_queries_cot,
            number_of_fsms_cot,
        ],
        queue=True,
    )

    constrained_leader_board_text.select(
        fn=show_constraint_heatmap, outputs=[constrained_leader_board_plot]
    )

    constrained_leader_board_text_cot.select(
        fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
    )

    intersection_leader_board.select(
        fn=show_intersection_heatmap, outputs=[heatmap_image]
    )

    demo.launch()