Tamil Eniyan
commited on
Commit
·
411f496
1
Parent(s):
d8ffd44
Add application file
Browse files
app.py
CHANGED
@@ -24,53 +24,68 @@ QA_MODEL_NAME = "deepset/roberta-large-squad2" # For the standard QA pipeline
|
|
24 |
|
25 |
@st.cache_resource
|
26 |
def load_index_and_chunks():
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
@st.cache_resource
|
33 |
def load_embedding_model():
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
@st.cache_resource
|
37 |
def load_qa_pipeline():
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
@st.cache_resource
|
41 |
def load_curated_qa_pairs(json_file=CURATED_QA_FILE):
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# ========================================
|
47 |
# Standard: Retrieve Curated Q/A Pair Function
|
48 |
# ========================================
|
49 |
|
50 |
def get_curated_pair(query, curated_qa, embed_model, threshold=1.0):
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
return curated_qa[idx]
|
72 |
-
else:
|
73 |
-
return None
|
74 |
|
75 |
# ============================================================
|
76 |
# Custom RAG Retriever: Uses your FAISS index & PDF passages
|
@@ -92,48 +107,56 @@ class CustomRagRetriever(RagRetriever):
|
|
92 |
super().__init__(dummy_dataset, tokenizer=tokenizer, index_name="custom")
|
93 |
|
94 |
def retrieve(self, query, n_docs=None):
|
95 |
-
|
96 |
-
n_docs
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# ============================================================
|
109 |
# Load RAG Model with Custom Retriever (cached for performance)
|
110 |
# ============================================================
|
111 |
|
112 |
@st.cache_resource
|
113 |
-
def load_rag_model(
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
def generate_rag_answer(query, tokenizer, rag_model):
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# ========================================
|
139 |
# Main Streamlit App
|
@@ -146,11 +169,24 @@ def main():
|
|
146 |
if 'conversation_history' not in st.session_state:
|
147 |
st.session_state.conversation_history = ""
|
148 |
|
149 |
-
# Load necessary data and models
|
150 |
-
index
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
st.write("Enter your question about the PDF document:")
|
156 |
query = st.text_input("Question:")
|
@@ -160,29 +196,38 @@ def main():
|
|
160 |
st.session_state.conversation_history += f"User: {query}\n"
|
161 |
|
162 |
# Retrieve relevant PDF context using the FAISS index
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
base_context = st.session_state.conversation_history + "\n"
|
171 |
|
172 |
# --- Option 1: Use RAG Model with Custom Retriever ---
|
173 |
if st.button("Use RAG Model with Custom Retriever"):
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
180 |
|
181 |
# --- Option 2: Use Standard QA Pipeline with Curated Q/A Pairs ---
|
182 |
-
|
183 |
-
|
|
|
184 |
if curated_pair:
|
185 |
-
st.
|
186 |
# Option to override with full PDF context ("High Reasoning")
|
187 |
use_full_data = st.checkbox("High Reasoning", value=False)
|
188 |
if not use_full_data:
|
@@ -200,13 +245,14 @@ def main():
|
|
200 |
st.write(pdf_context)
|
201 |
|
202 |
st.subheader("Answer:")
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
main()
|
|
|
24 |
|
25 |
@st.cache_resource
|
26 |
def load_index_and_chunks():
|
27 |
+
try:
|
28 |
+
index = faiss.read_index(INDEX_FILE)
|
29 |
+
with open(CHUNKS_FILE, "rb") as f:
|
30 |
+
chunks = pickle.load(f)
|
31 |
+
return index, chunks
|
32 |
+
except Exception as e:
|
33 |
+
st.error(f"Error loading FAISS index and chunks: {e}")
|
34 |
+
return None, None
|
35 |
|
36 |
@st.cache_resource
|
37 |
def load_embedding_model():
|
38 |
+
try:
|
39 |
+
model = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
40 |
+
return model
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error loading embedding model: {e}")
|
43 |
+
return None
|
44 |
|
45 |
@st.cache_resource
|
46 |
def load_qa_pipeline():
|
47 |
+
try:
|
48 |
+
qa_pipe = pipeline("question-answering", model=QA_MODEL_NAME, tokenizer=QA_MODEL_NAME)
|
49 |
+
return qa_pipe
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"Error loading QA pipeline: {e}")
|
52 |
+
return None
|
53 |
|
54 |
@st.cache_resource
|
55 |
def load_curated_qa_pairs(json_file=CURATED_QA_FILE):
|
56 |
+
try:
|
57 |
+
with open(json_file, "r", encoding="utf-8") as f:
|
58 |
+
curated_qa_pairs = json.load(f)
|
59 |
+
return curated_qa_pairs
|
60 |
+
except Exception as e:
|
61 |
+
st.error(f"Error loading curated Q/A pairs from JSON: {e}")
|
62 |
+
return []
|
63 |
|
64 |
# ========================================
|
65 |
# Standard: Retrieve Curated Q/A Pair Function
|
66 |
# ========================================
|
67 |
|
68 |
def get_curated_pair(query, curated_qa, embed_model, threshold=1.0):
|
69 |
+
try:
|
70 |
+
curated_questions = [qa["question"] for qa in curated_qa]
|
71 |
+
query_embedding = embed_model.encode([query]).astype('float32')
|
72 |
+
curated_embeddings = embed_model.encode(curated_questions, show_progress_bar=False)
|
73 |
+
curated_embeddings = np.array(curated_embeddings).astype('float32')
|
74 |
+
|
75 |
+
# Build a temporary FAISS index for the curated questions
|
76 |
+
dimension = curated_embeddings.shape[1]
|
77 |
+
curated_index = faiss.IndexFlatL2(dimension)
|
78 |
+
curated_index.add(curated_embeddings)
|
79 |
+
|
80 |
+
k = 1
|
81 |
+
distances, indices = curated_index.search(query_embedding, k)
|
82 |
+
|
83 |
+
if distances[0][0] < threshold:
|
84 |
+
idx = indices[0][0]
|
85 |
+
return curated_qa[idx]
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error retrieving curated Q/A pair: {e}")
|
88 |
+
return None
|
|
|
|
|
|
|
89 |
|
90 |
# ============================================================
|
91 |
# Custom RAG Retriever: Uses your FAISS index & PDF passages
|
|
|
107 |
super().__init__(dummy_dataset, tokenizer=tokenizer, index_name="custom")
|
108 |
|
109 |
def retrieve(self, query, n_docs=None):
|
110 |
+
try:
|
111 |
+
if n_docs is None:
|
112 |
+
n_docs = self.n_docs
|
113 |
+
# Encode the query using your embedding model
|
114 |
+
query_embedding = self.embed_model.encode([query]).astype('float32')
|
115 |
+
distances, indices = self.faiss_index.search(query_embedding, n_docs)
|
116 |
+
# Retrieve the passages using the indices
|
117 |
+
retrieved_docs = [self.passages[i] for i in indices[0]]
|
118 |
+
return {
|
119 |
+
"doc_ids": indices,
|
120 |
+
"doc_scores": distances,
|
121 |
+
"retrieved_docs": retrieved_docs,
|
122 |
+
}
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Error in custom retrieval: {e}")
|
125 |
+
return {"doc_ids": None, "doc_scores": None, "retrieved_docs": []}
|
126 |
|
127 |
# ============================================================
|
128 |
# Load RAG Model with Custom Retriever (cached for performance)
|
129 |
# ============================================================
|
130 |
|
131 |
@st.cache_resource
|
132 |
+
def load_rag_model(_faiss_index, passages, embed_model):
|
133 |
+
try:
|
134 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
135 |
+
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
136 |
+
|
137 |
+
custom_retriever = CustomRagRetriever(
|
138 |
+
faiss_index=_faiss_index,
|
139 |
+
passages=passages,
|
140 |
+
embed_model=embed_model,
|
141 |
+
tokenizer=tokenizer,
|
142 |
+
n_docs=5
|
143 |
+
)
|
144 |
+
rag_model.set_retriever(custom_retriever)
|
145 |
+
return tokenizer, rag_model
|
146 |
+
except Exception as e:
|
147 |
+
st.error(f"Error loading RAG model with custom retriever: {e}")
|
148 |
+
return None, None
|
149 |
|
150 |
def generate_rag_answer(query, tokenizer, rag_model):
|
151 |
+
try:
|
152 |
+
inputs = tokenizer(query, return_tensors="pt")
|
153 |
+
with torch.no_grad():
|
154 |
+
generated_ids = rag_model.generate(**inputs)
|
155 |
+
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
156 |
+
return answer
|
157 |
+
except Exception as e:
|
158 |
+
st.error(f"Error generating answer with RAG model: {e}")
|
159 |
+
return ""
|
160 |
|
161 |
# ========================================
|
162 |
# Main Streamlit App
|
|
|
169 |
if 'conversation_history' not in st.session_state:
|
170 |
st.session_state.conversation_history = ""
|
171 |
|
172 |
+
# Load necessary data and models with spinners for responsiveness
|
173 |
+
with st.spinner("Loading index and passages..."):
|
174 |
+
index, chunks = load_index_and_chunks()
|
175 |
+
if index is None or chunks is None:
|
176 |
+
return
|
177 |
+
|
178 |
+
with st.spinner("Loading embedding model..."):
|
179 |
+
embed_model = load_embedding_model()
|
180 |
+
if embed_model is None:
|
181 |
+
return
|
182 |
+
|
183 |
+
with st.spinner("Loading QA pipeline..."):
|
184 |
+
qa_pipeline = load_qa_pipeline()
|
185 |
+
if qa_pipeline is None:
|
186 |
+
return
|
187 |
+
|
188 |
+
with st.spinner("Loading curated Q/A pairs..."):
|
189 |
+
curated_qa_pairs = load_curated_qa_pairs()
|
190 |
|
191 |
st.write("Enter your question about the PDF document:")
|
192 |
query = st.text_input("Question:")
|
|
|
196 |
st.session_state.conversation_history += f"User: {query}\n"
|
197 |
|
198 |
# Retrieve relevant PDF context using the FAISS index
|
199 |
+
with st.spinner("Retrieving relevant PDF context..."):
|
200 |
+
try:
|
201 |
+
query_embedding = embed_model.encode([query]).astype('float32')
|
202 |
+
k = 3 # Number of top chunks to retrieve
|
203 |
+
distances, indices = index.search(query_embedding, k)
|
204 |
+
pdf_context = ""
|
205 |
+
for idx in indices[0]:
|
206 |
+
pdf_context += chunks[idx] + "\n"
|
207 |
+
except Exception as e:
|
208 |
+
st.error(f"Error retrieving PDF context: {e}")
|
209 |
+
return
|
210 |
|
211 |
base_context = st.session_state.conversation_history + "\n"
|
212 |
|
213 |
# --- Option 1: Use RAG Model with Custom Retriever ---
|
214 |
if st.button("Use RAG Model with Custom Retriever"):
|
215 |
+
with st.spinner("Generating answer using RAG model..."):
|
216 |
+
tokenizer_rag, rag_model = load_rag_model(index, chunks, embed_model)
|
217 |
+
if tokenizer_rag is None or rag_model is None:
|
218 |
+
return
|
219 |
+
rag_answer = generate_rag_answer(query, tokenizer_rag, rag_model)
|
220 |
+
st.write("**RAG Model Answer:**")
|
221 |
+
st.write(rag_answer)
|
222 |
+
st.session_state.conversation_history += f"AI (RAG): {rag_answer}\n"
|
223 |
+
return # Exit after using the RAG answer
|
224 |
|
225 |
# --- Option 2: Use Standard QA Pipeline with Curated Q/A Pairs ---
|
226 |
+
with st.spinner("Checking for curated Q/A pair..."):
|
227 |
+
curated_pair = get_curated_pair(query, curated_qa_pairs, embed_model)
|
228 |
+
|
229 |
if curated_pair:
|
230 |
+
st.info("A curated Q/A pair was found and will be used for the answer by default.")
|
231 |
# Option to override with full PDF context ("High Reasoning")
|
232 |
use_full_data = st.checkbox("High Reasoning", value=False)
|
233 |
if not use_full_data:
|
|
|
245 |
st.write(pdf_context)
|
246 |
|
247 |
st.subheader("Answer:")
|
248 |
+
with st.spinner("Generating answer using standard QA pipeline..."):
|
249 |
+
try:
|
250 |
+
result = qa_pipeline(question=query, context=context_to_use)
|
251 |
+
answer = result["answer"]
|
252 |
+
st.write(answer)
|
253 |
+
st.session_state.conversation_history += f"AI: {answer}\n"
|
254 |
+
except Exception as e:
|
255 |
+
st.error(f"Error generating answer using QA pipeline: {e}")
|
256 |
|
257 |
if __name__ == "__main__":
|
258 |
main()
|