Tamil Eniyan
commited on
Commit
·
d8ffd44
1
Parent(s):
6170969
Add application file
Browse files
app.py
CHANGED
@@ -4,16 +4,23 @@ import numpy as np
|
|
4 |
import pickle
|
5 |
import json
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
-
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# File names for saved PDF-based data and curated Q/A pairs
|
10 |
INDEX_FILE = "faiss_index.index"
|
11 |
CHUNKS_FILE = "chunks.pkl"
|
12 |
CURATED_QA_FILE = "curated_qa_pairs.json"
|
13 |
|
14 |
-
# Models
|
15 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
16 |
-
QA_MODEL_NAME = "deepset/roberta-large-squad2" #
|
|
|
|
|
|
|
|
|
17 |
|
18 |
@st.cache_resource
|
19 |
def load_index_and_chunks():
|
@@ -36,6 +43,10 @@ def load_curated_qa_pairs(json_file=CURATED_QA_FILE):
|
|
36 |
curated_qa_pairs = json.load(f)
|
37 |
return curated_qa_pairs
|
38 |
|
|
|
|
|
|
|
|
|
39 |
def get_curated_pair(query, curated_qa, embed_model, threshold=1.0):
|
40 |
"""
|
41 |
Retrieve the most relevant curated Q/A pair based on the user's query.
|
@@ -61,14 +72,81 @@ def get_curated_pair(query, curated_qa, embed_model, threshold=1.0):
|
|
61 |
else:
|
62 |
return None
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def main():
|
65 |
st.title("Takalama")
|
66 |
|
67 |
-
# Initialize conversation history if not
|
68 |
if 'conversation_history' not in st.session_state:
|
69 |
st.session_state.conversation_history = ""
|
70 |
|
71 |
-
# Load
|
72 |
index, chunks = load_index_and_chunks()
|
73 |
embed_model = load_embedding_model()
|
74 |
qa_pipeline = load_qa_pipeline()
|
@@ -78,39 +156,46 @@ def main():
|
|
78 |
query = st.text_input("Question:")
|
79 |
|
80 |
if query:
|
81 |
-
# Append
|
82 |
st.session_state.conversation_history += f"User: {query}\n"
|
83 |
|
84 |
# Retrieve relevant PDF context using the FAISS index
|
85 |
query_embedding = embed_model.encode([query]).astype('float32')
|
86 |
k = 3 # Number of top chunks to retrieve
|
87 |
distances, indices = index.search(query_embedding, k)
|
88 |
-
|
89 |
pdf_context = ""
|
90 |
for idx in indices[0]:
|
91 |
pdf_context += chunks[idx] + "\n"
|
92 |
|
93 |
base_context = st.session_state.conversation_history + "\n"
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# Check for a curated Q/A pair
|
96 |
curated_pair = get_curated_pair(query, curated_qa_pairs, embed_model)
|
97 |
-
|
98 |
if curated_pair:
|
99 |
st.write("A curated Q/A pair was found and will be used for the answer by default.")
|
100 |
-
# Option to override with full PDF context
|
101 |
use_full_data = st.checkbox("High Reasoning", value=False)
|
102 |
if not use_full_data:
|
103 |
-
# Directly display the curated answer without running the QA pipeline
|
104 |
answer = curated_pair["answer"]
|
105 |
st.write(answer)
|
106 |
st.session_state.conversation_history += f"AI: {answer}\n"
|
107 |
-
return # Exit
|
108 |
else:
|
109 |
context_to_use = base_context + pdf_context
|
110 |
else:
|
111 |
context_to_use = base_context + pdf_context
|
112 |
|
113 |
-
#
|
114 |
with st.expander("Show Full PDF Context"):
|
115 |
st.write(pdf_context)
|
116 |
|
|
|
4 |
import pickle
|
5 |
import json
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import pipeline, RagTokenizer, RagRetriever, RagSequenceForGeneration
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# ========================
|
11 |
+
# File Names & Model Names
|
12 |
+
# ========================
|
13 |
|
|
|
14 |
INDEX_FILE = "faiss_index.index"
|
15 |
CHUNKS_FILE = "chunks.pkl"
|
16 |
CURATED_QA_FILE = "curated_qa_pairs.json"
|
17 |
|
|
|
18 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2"
|
19 |
+
QA_MODEL_NAME = "deepset/roberta-large-squad2" # For the standard QA pipeline
|
20 |
+
|
21 |
+
# ========================
|
22 |
+
# Loading Functions (cached)
|
23 |
+
# ========================
|
24 |
|
25 |
@st.cache_resource
|
26 |
def load_index_and_chunks():
|
|
|
43 |
curated_qa_pairs = json.load(f)
|
44 |
return curated_qa_pairs
|
45 |
|
46 |
+
# ========================================
|
47 |
+
# Standard: Retrieve Curated Q/A Pair Function
|
48 |
+
# ========================================
|
49 |
+
|
50 |
def get_curated_pair(query, curated_qa, embed_model, threshold=1.0):
|
51 |
"""
|
52 |
Retrieve the most relevant curated Q/A pair based on the user's query.
|
|
|
72 |
else:
|
73 |
return None
|
74 |
|
75 |
+
# ============================================================
|
76 |
+
# Custom RAG Retriever: Uses your FAISS index & PDF passages
|
77 |
+
# ============================================================
|
78 |
+
|
79 |
+
class CustomRagRetriever(RagRetriever):
|
80 |
+
"""
|
81 |
+
A custom retriever that uses your FAISS index and passages.
|
82 |
+
It encodes the query with the provided embedding model,
|
83 |
+
searches your FAISS index, and returns the top retrieved documents.
|
84 |
+
"""
|
85 |
+
def __init__(self, faiss_index, passages, embed_model, tokenizer, n_docs=5):
|
86 |
+
self.faiss_index = faiss_index # FAISS index of PDF embeddings
|
87 |
+
self.passages = passages # List of passage texts from your PDF
|
88 |
+
self.embed_model = embed_model # Embedding model to encode queries
|
89 |
+
self.n_docs = n_docs # Number of top documents to retrieve
|
90 |
+
# Provide a dummy dataset to satisfy the base class.
|
91 |
+
dummy_dataset = {"title": ["dummy"], "text": ["dummy"]}
|
92 |
+
super().__init__(dummy_dataset, tokenizer=tokenizer, index_name="custom")
|
93 |
+
|
94 |
+
def retrieve(self, query, n_docs=None):
|
95 |
+
if n_docs is None:
|
96 |
+
n_docs = self.n_docs
|
97 |
+
# Encode the query using your embedding model
|
98 |
+
query_embedding = self.embed_model.encode([query]).astype('float32')
|
99 |
+
distances, indices = self.faiss_index.search(query_embedding, n_docs)
|
100 |
+
# Retrieve the passages using the indices
|
101 |
+
retrieved_docs = [self.passages[i] for i in indices[0]]
|
102 |
+
return {
|
103 |
+
"doc_ids": indices,
|
104 |
+
"doc_scores": distances,
|
105 |
+
"retrieved_docs": retrieved_docs,
|
106 |
+
}
|
107 |
+
|
108 |
+
# ============================================================
|
109 |
+
# Load RAG Model with Custom Retriever (cached for performance)
|
110 |
+
# ============================================================
|
111 |
+
|
112 |
+
@st.cache_resource
|
113 |
+
def load_rag_model(faiss_index, passages, embed_model):
|
114 |
+
# Load the RAG tokenizer and base model
|
115 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
116 |
+
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
117 |
+
|
118 |
+
# Create the custom retriever using your FAISS index, passages, and embedding model
|
119 |
+
custom_retriever = CustomRagRetriever(
|
120 |
+
faiss_index=faiss_index,
|
121 |
+
passages=passages,
|
122 |
+
embed_model=embed_model,
|
123 |
+
tokenizer=tokenizer,
|
124 |
+
n_docs=5
|
125 |
+
)
|
126 |
+
|
127 |
+
# Set the custom retriever in the RAG model
|
128 |
+
rag_model.set_retriever(custom_retriever)
|
129 |
+
return tokenizer, rag_model
|
130 |
+
|
131 |
+
def generate_rag_answer(query, tokenizer, rag_model):
|
132 |
+
inputs = tokenizer(query, return_tensors="pt")
|
133 |
+
with torch.no_grad():
|
134 |
+
generated_ids = rag_model.generate(**inputs)
|
135 |
+
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
136 |
+
return answer
|
137 |
+
|
138 |
+
# ========================================
|
139 |
+
# Main Streamlit App
|
140 |
+
# ========================================
|
141 |
+
|
142 |
def main():
|
143 |
st.title("Takalama")
|
144 |
|
145 |
+
# Initialize conversation history if not present
|
146 |
if 'conversation_history' not in st.session_state:
|
147 |
st.session_state.conversation_history = ""
|
148 |
|
149 |
+
# Load necessary data and models
|
150 |
index, chunks = load_index_and_chunks()
|
151 |
embed_model = load_embedding_model()
|
152 |
qa_pipeline = load_qa_pipeline()
|
|
|
156 |
query = st.text_input("Question:")
|
157 |
|
158 |
if query:
|
159 |
+
# Append question to conversation history
|
160 |
st.session_state.conversation_history += f"User: {query}\n"
|
161 |
|
162 |
# Retrieve relevant PDF context using the FAISS index
|
163 |
query_embedding = embed_model.encode([query]).astype('float32')
|
164 |
k = 3 # Number of top chunks to retrieve
|
165 |
distances, indices = index.search(query_embedding, k)
|
|
|
166 |
pdf_context = ""
|
167 |
for idx in indices[0]:
|
168 |
pdf_context += chunks[idx] + "\n"
|
169 |
|
170 |
base_context = st.session_state.conversation_history + "\n"
|
171 |
|
172 |
+
# --- Option 1: Use RAG Model with Custom Retriever ---
|
173 |
+
if st.button("Use RAG Model with Custom Retriever"):
|
174 |
+
tokenizer_rag, rag_model = load_rag_model(index, chunks, embed_model)
|
175 |
+
rag_answer = generate_rag_answer(query, tokenizer_rag, rag_model)
|
176 |
+
st.write("**RAG Model Answer:**")
|
177 |
+
st.write(rag_answer)
|
178 |
+
st.session_state.conversation_history += f"AI (RAG): {rag_answer}\n"
|
179 |
+
return # Exit after using the RAG answer
|
180 |
+
|
181 |
+
# --- Option 2: Use Standard QA Pipeline with Curated Q/A Pairs ---
|
182 |
# Check for a curated Q/A pair
|
183 |
curated_pair = get_curated_pair(query, curated_qa_pairs, embed_model)
|
|
|
184 |
if curated_pair:
|
185 |
st.write("A curated Q/A pair was found and will be used for the answer by default.")
|
186 |
+
# Option to override with full PDF context ("High Reasoning")
|
187 |
use_full_data = st.checkbox("High Reasoning", value=False)
|
188 |
if not use_full_data:
|
|
|
189 |
answer = curated_pair["answer"]
|
190 |
st.write(answer)
|
191 |
st.session_state.conversation_history += f"AI: {answer}\n"
|
192 |
+
return # Exit after displaying the curated answer
|
193 |
else:
|
194 |
context_to_use = base_context + pdf_context
|
195 |
else:
|
196 |
context_to_use = base_context + pdf_context
|
197 |
|
198 |
+
# Optionally, show the full PDF context in an expander
|
199 |
with st.expander("Show Full PDF Context"):
|
200 |
st.write(pdf_context)
|
201 |
|