Spaces:
Running
Running
import os | |
import json | |
import traceback | |
from typing import Optional, Tuple, Union, List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from PIL import Image, PngImagePlugin | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
from transformers import AutoProcessor, AutoModel, AutoImageProcessor | |
import gradio as gr | |
import math # Added math | |
# --- Device Setup --- | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Use float16 for vision model on CUDA for speed/memory, but head expects float32 | |
VISION_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32 | |
HEAD_DTYPE = torch.float32 # Head usually trained/stable in float32 | |
print(f"Using device: {DEVICE}") | |
print(f"Vision model dtype: {VISION_DTYPE}") | |
print(f"Head model dtype: {HEAD_DTYPE}") | |
# --- Model Definitions (Copied from hybrid_model.py) --- | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(dim)) | |
self.eps = eps | |
def _norm(self, x: torch.Tensor) -> torch.Tensor: | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def extra_repr(self) -> str: | |
return f"{tuple(self.weight.shape)}, eps={self.eps}" | |
class SwiGLUFFN(nn.Module): | |
def __init__(self, in_features: int, hidden_features: int = None, out_features: int = None, act_layer: nn.Module = nn.SiLU, dropout: float = 0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or int(in_features * 8 / 3 / 2 * 2 ) | |
hidden_features = (hidden_features + 1) // 2 * 2 | |
self.w12 = nn.Linear(in_features, hidden_features * 2, bias=False) | |
self.act = act_layer() | |
self.dropout1 = nn.Dropout(dropout) | |
self.w3 = nn.Linear(hidden_features, out_features, bias=False) | |
self.dropout2 = nn.Dropout(dropout) | |
def forward(self, x): | |
gate_val, up_val = self.w12(x).chunk(2, dim=-1) | |
x = self.dropout1(self.act(gate_val) * up_val) | |
x = self.dropout2(self.w3(x)) | |
return x | |
class ResBlockRMS(nn.Module): | |
def __init__(self, ch: int, dropout: float = 0.0, rms_norm_eps: float = 1e-6): | |
super().__init__() | |
self.norm = RMSNorm(ch, eps=rms_norm_eps) | |
self.ffn = SwiGLUFFN(in_features=ch, dropout=dropout) | |
def forward(self, x): | |
return x + self.ffn(self.norm(x)) | |
class HybridHeadModel(nn.Module): | |
def __init__(self, features: int, hidden_dim: int = 1280, num_classes: int = 2, use_attention: bool = True, | |
num_attn_heads: int = 16, attn_dropout: float = 0.1, num_res_blocks: int = 3, | |
dropout_rate: float = 0.1, rms_norm_eps: float = 1e-6, output_mode: str = 'linear'): | |
super().__init__() | |
self.features = features; self.hidden_dim = hidden_dim; self.num_classes = num_classes | |
self.use_attention = use_attention; self.output_mode = output_mode.lower() | |
# --- Optional Self-Attention Layer --- | |
self.attention = None; self.norm_attn = None | |
if self.use_attention: | |
actual_num_heads = num_attn_heads # Adjust head logic needed here if features != 1152 | |
# Simple head adjustment: | |
if features % num_attn_heads != 0: | |
possible_heads = [h for h in [1, 2, 4, 8, 16] if features % h == 0] | |
if not possible_heads: actual_num_heads = 1 # Fallback to 1 head if no divisors found | |
else: actual_num_heads = min(possible_heads, key=lambda x: abs(x-num_attn_heads)) | |
if actual_num_heads != num_attn_heads: print(f"HybridHead Warning: Adjusting heads {num_attn_heads}->{actual_num_heads}") | |
self.attention = nn.MultiheadAttention(features, actual_num_heads, dropout=attn_dropout, batch_first=True, bias=True) | |
self.norm_attn = RMSNorm(features, eps=rms_norm_eps) | |
# --- MLP Head --- | |
mlp_layers = [] | |
mlp_layers.append(nn.Linear(features, hidden_dim)); mlp_layers.append(RMSNorm(hidden_dim, eps=rms_norm_eps)) | |
for _ in range(num_res_blocks): mlp_layers.append(ResBlockRMS(hidden_dim, dropout=dropout_rate, rms_norm_eps=rms_norm_eps)) | |
mlp_layers.append(RMSNorm(hidden_dim, eps=rms_norm_eps)) | |
down_proj_hidden = hidden_dim // 2 | |
mlp_layers.append(SwiGLUFFN(hidden_dim, hidden_features=down_proj_hidden, out_features=down_proj_hidden, dropout=dropout_rate)) | |
mlp_layers.append(RMSNorm(down_proj_hidden, eps=rms_norm_eps)) | |
mlp_layers.append(nn.Linear(down_proj_hidden, num_classes)) | |
self.mlp_head = nn.Sequential(*mlp_layers) | |
# --- Validate Output Mode --- | |
# (Warnings can be added here if desired, but functionality handled in forward) | |
def forward(self, x: torch.Tensor): | |
if self.use_attention and self.attention is not None: | |
x_seq = x.unsqueeze(1); attn_output, _ = self.attention(x_seq, x_seq, x_seq); x = self.norm_attn(x + attn_output.squeeze(1)) | |
logits = self.mlp_head(x.to(HEAD_DTYPE)) # Ensure input to MLP has correct dtype | |
# --- Apply Final Activation --- | |
output = None | |
if self.output_mode == 'linear': output = logits | |
elif self.output_mode == 'sigmoid': output = torch.sigmoid(logits) | |
elif self.output_mode == 'softmax': output = F.softmax(logits, dim=-1) | |
elif self.output_mode == 'tanh_scaled': output = (torch.tanh(logits) + 1.0) / 2.0 | |
else: raise RuntimeError(f"Invalid output_mode '{self.output_mode}'.") | |
if self.num_classes == 1 and output.ndim == 2 and output.shape[1] == 1: output = output.squeeze(-1) | |
return output | |
# --- Constants and Model Loading --- | |
# Option 1: Files are in the Space repo (e.g., in a 'model' folder) | |
# MODEL_DIR = "model" | |
# HEAD_MODEL_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000_s9K.safetensors" | |
# CONFIG_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000.config.json" # Assuming config matches base name | |
# HEAD_MODEL_PATH = os.path.join(MODEL_DIR, HEAD_MODEL_FILENAME) | |
# CONFIG_PATH = os.path.join(MODEL_DIR, CONFIG_FILENAME) | |
# Option 2: Download from Hub | |
# Replace with your HF username and repo name | |
HUB_REPO_ID = "Enferlain/lumi-classifier" # Or wherever you uploaded the model | |
# Use the specific checkpoint you want (e.g., s9k or the best_val one) | |
HEAD_MODEL_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000_s6K_best_val.safetensors" | |
# Usually config corresponds to the base run name, not a specific step | |
CONFIG_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000.config.json" | |
print("Downloading model files if necessary...") | |
try: | |
HEAD_MODEL_PATH = hf_hub_download(repo_id=HUB_REPO_ID, filename=HEAD_MODEL_FILENAME) | |
CONFIG_PATH = hf_hub_download(repo_id=HUB_REPO_ID, filename=CONFIG_FILENAME) | |
print("Files downloaded/found successfully.") | |
except Exception as e: | |
print(f"ERROR downloading files from {HUB_REPO_ID}: {e}") | |
print("Please ensure the files exist on the Hub or place them in a local 'model' folder.") | |
# Optionally exit or fallback | |
exit(1) # Exit if essential files aren't available | |
# --- Load Config --- | |
print(f"Loading config from: {CONFIG_PATH}") | |
config = {} | |
try: | |
with open(CONFIG_PATH, 'r', encoding='utf-8') as f: | |
config = json.load(f) | |
except Exception as e: | |
print(f"ERROR loading config file: {e}"); exit(1) | |
# --- Load Vision Model --- | |
BASE_VISION_MODEL_NAME = config.get("base_vision_model", "google/siglip2-so400m-patch16-naflex") | |
print(f"Loading vision model: {BASE_VISION_MODEL_NAME}") | |
try: | |
hf_processor = AutoProcessor.from_pretrained(BASE_VISION_MODEL_NAME) | |
vision_model = AutoModel.from_pretrained( | |
BASE_VISION_MODEL_NAME, torch_dtype=VISION_DTYPE | |
).to(DEVICE).eval() | |
print("Vision model loaded.") | |
except Exception as e: | |
print(f"ERROR loading vision model: {e}"); exit(1) | |
# --- Load HybridHeadModel --- | |
print(f"Loading head model: {HEAD_MODEL_PATH}") | |
head_model = None | |
try: | |
state_dict = load_file(HEAD_MODEL_PATH, device='cpu') | |
# Infer details from config - use defaults matching the successful run | |
features = config.get("features", 1152) | |
num_classes = config.get("num_classes", 2) # Should be 2 for focal loss run | |
output_mode = config.get("output_mode", "linear") # Should be linear | |
hidden_dim = config.get("hidden_dim", 1280) | |
num_res_blocks = config.get("num_res_blocks", 3) | |
dropout_rate = config.get("dropout_rate", 0.3) # Use the high dropout from best run | |
use_attention = config.get("use_attention", True) # Use attention was likely True | |
num_attn_heads = config.get("num_attn_heads", 16) | |
attn_dropout = config.get("attn_dropout", 0.3) # Use the high dropout | |
rms_norm_eps= config.get("rms_norm_eps", 1e-6) | |
head_model = HybridHeadModel( | |
features=features, hidden_dim=hidden_dim, num_classes=num_classes, | |
use_attention=use_attention, num_attn_heads=num_attn_heads, attn_dropout=attn_dropout, | |
num_res_blocks=num_res_blocks, dropout_rate=dropout_rate, rms_norm_eps=rms_norm_eps, | |
output_mode=output_mode | |
) | |
missing, unexpected = head_model.load_state_dict(state_dict, strict=False) | |
if missing: print(f"Warning: Missing keys loading head: {missing}") | |
if unexpected: print(f"Warning: Unexpected keys loading head: {unexpected}") | |
head_model.to(DEVICE).eval() | |
print("Head model loaded.") | |
except Exception as e: | |
print(f"ERROR loading head model: {e}"); exit(1) | |
# --- Label Mapping --- | |
# Assume labels are '0': Bad, '1': Good from config or default | |
LABELS = config.get("labels", {'0': 'Bad Anatomy', '1': 'Good Anatomy'}) | |
LABEL_NAMES = { | |
0: LABELS.get('0', 'Class 0'), | |
1: LABELS.get('1', 'Class 1') | |
} | |
print(f"Using Labels: {LABEL_NAMES}") | |
# --- Prediction Function --- | |
def predict_anatomy(image: Image.Image): | |
"""Takes PIL Image, returns dict of class probabilities.""" | |
if image is None: return {"Error": "No image provided"} | |
try: | |
pil_image = image.convert("RGB") | |
# 1. Extract SigLIP NaFlex Embedding | |
with torch.no_grad(): | |
inputs = hf_processor(images=[pil_image], return_tensors="pt", max_num_patches=1024) | |
pixel_values = inputs.get("pixel_values").to(device=DEVICE, dtype=VISION_DTYPE) | |
attention_mask = inputs.get("pixel_attention_mask").to(device=DEVICE) | |
spatial_shapes = inputs.get("spatial_shapes") | |
model_call_kwargs = {"pixel_values": pixel_values, "attention_mask": attention_mask, | |
"spatial_shapes": torch.tensor(spatial_shapes, dtype=torch.long).to(DEVICE)} | |
vision_model_component = getattr(vision_model, 'vision_model', vision_model) # Handle potential nesting | |
emb = vision_model_component(**model_call_kwargs).pooler_output | |
if emb is None: raise ValueError("Failed to get embedding.") | |
# L2 Norm | |
norm = torch.linalg.norm(emb.float(), dim=-1, keepdim=True).clamp(min=1e-8) | |
emb_normalized = emb / norm.to(emb.dtype) | |
# 2. Obtain Prediction from HybridHeadModel Head | |
with torch.no_grad(): | |
prediction = head_model(emb_normalized.to(DEVICE, dtype=HEAD_DTYPE)) | |
# 3. Format Output Probabilities | |
output_probs = {} | |
output_mode = getattr(head_model, 'output_mode', 'linear') | |
if head_model.num_classes == 1: | |
logit = prediction.squeeze().item() | |
prob_good = torch.sigmoid(torch.tensor(logit)).item() if output_mode == 'linear' else logit | |
output_probs[LABEL_NAMES[0]] = 1.0 - prob_good | |
output_probs[LABEL_NAMES[1]] = prob_good | |
elif head_model.num_classes == 2: | |
if output_mode == 'linear': | |
probs = F.softmax(prediction.squeeze().float(), dim=-1) # Use float for softmax stability | |
else: # Assume sigmoid or already softmax | |
probs = prediction.squeeze().float() | |
output_probs[LABEL_NAMES[0]] = probs[0].item() | |
output_probs[LABEL_NAMES[1]] = probs[1].item() | |
else: | |
output_probs["Error"] = f"Unsupported num_classes: {head_model.num_classes}" | |
# Convert to percentage strings for gr.Label maybe? Or keep floats? Keep floats. | |
# output_formatted = {k: f"{v:.1%}" for k, v in output_probs.items()} | |
return output_probs | |
except Exception as e: | |
print(f"Error during prediction: {e}\n{traceback.format_exc()}") | |
return {"Error": str(e)} | |
# --- Gradio Interface --- | |
DESCRIPTION = """ | |
## Anatomy Flaw Classifier Demo ✨ (Based on SigLIP Naflex + Hybrid Head) | |
Upload an image to classify its anatomy as 'Good' or 'Bad'. | |
This model uses embeddings from **google/siglip2-so400m-patch16-naflex** | |
and a custom **HybridHeadModel** fine-tuned for anatomy classification. | |
""" | |
# Add example images if you have some in an 'examples' folder in the Space repo | |
EXAMPLE_DIR = "examples" | |
examples = [] | |
if os.path.isdir(EXAMPLE_DIR): | |
examples = [os.path.join(EXAMPLE_DIR, fname) for fname in sorted(os.listdir(EXAMPLE_DIR)) if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))] | |
interface = gr.Interface( | |
fn=predict_anatomy, | |
inputs=gr.Image(type="pil", label="Input Image"), | |
outputs=gr.Label(label="Class Probabilities", num_top_classes=2), # Show top 2 classes | |
title="Lumi's Anatomy Classifier Demo", | |
description=DESCRIPTION, | |
examples=examples if examples else None, | |
allow_flagging="never", | |
cache_examples=False # Disable caching if examples change or loading is fast | |
) | |
if __name__ == "__main__": | |
interface.launch() |