File size: 13,785 Bytes
5843fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b64b55
5843fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import json
import traceback
from typing import Optional, Tuple, Union, List

import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image, PngImagePlugin
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from transformers import AutoProcessor, AutoModel, AutoImageProcessor
import gradio as gr
import math # Added math

# --- Device Setup ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Use float16 for vision model on CUDA for speed/memory, but head expects float32
VISION_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
HEAD_DTYPE = torch.float32 # Head usually trained/stable in float32

print(f"Using device: {DEVICE}")
print(f"Vision model dtype: {VISION_DTYPE}")
print(f"Head model dtype: {HEAD_DTYPE}")


# --- Model Definitions (Copied from hybrid_model.py) ---

class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(dim))
        self.eps = eps
    def _norm(self, x: torch.Tensor) -> torch.Tensor:
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight
    def extra_repr(self) -> str:
        return f"{tuple(self.weight.shape)}, eps={self.eps}"

class SwiGLUFFN(nn.Module):
    def __init__(self, in_features: int, hidden_features: int = None, out_features: int = None, act_layer: nn.Module = nn.SiLU, dropout: float = 0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or int(in_features * 8 / 3 / 2 * 2 )
        hidden_features = (hidden_features + 1) // 2 * 2
        self.w12 = nn.Linear(in_features, hidden_features * 2, bias=False)
        self.act = act_layer()
        self.dropout1 = nn.Dropout(dropout)
        self.w3 = nn.Linear(hidden_features, out_features, bias=False)
        self.dropout2 = nn.Dropout(dropout)
    def forward(self, x):
        gate_val, up_val = self.w12(x).chunk(2, dim=-1)
        x = self.dropout1(self.act(gate_val) * up_val)
        x = self.dropout2(self.w3(x))
        return x

class ResBlockRMS(nn.Module):
    def __init__(self, ch: int, dropout: float = 0.0, rms_norm_eps: float = 1e-6):
        super().__init__()
        self.norm = RMSNorm(ch, eps=rms_norm_eps)
        self.ffn = SwiGLUFFN(in_features=ch, dropout=dropout)
    def forward(self, x):
        return x + self.ffn(self.norm(x))

class HybridHeadModel(nn.Module):
    def __init__(self, features: int, hidden_dim: int = 1280, num_classes: int = 2, use_attention: bool = True,
                 num_attn_heads: int = 16, attn_dropout: float = 0.1, num_res_blocks: int = 3,
                 dropout_rate: float = 0.1, rms_norm_eps: float = 1e-6, output_mode: str = 'linear'):
        super().__init__()
        self.features = features; self.hidden_dim = hidden_dim; self.num_classes = num_classes
        self.use_attention = use_attention; self.output_mode = output_mode.lower()
        # --- Optional Self-Attention Layer ---
        self.attention = None; self.norm_attn = None
        if self.use_attention:
            actual_num_heads = num_attn_heads # Adjust head logic needed here if features != 1152
            # Simple head adjustment:
            if features % num_attn_heads != 0:
                possible_heads = [h for h in [1, 2, 4, 8, 16] if features % h == 0]
                if not possible_heads: actual_num_heads = 1 # Fallback to 1 head if no divisors found
                else: actual_num_heads = min(possible_heads, key=lambda x: abs(x-num_attn_heads))
                if actual_num_heads != num_attn_heads: print(f"HybridHead Warning: Adjusting heads {num_attn_heads}->{actual_num_heads}")

            self.attention = nn.MultiheadAttention(features, actual_num_heads, dropout=attn_dropout, batch_first=True, bias=True)
            self.norm_attn = RMSNorm(features, eps=rms_norm_eps)
        # --- MLP Head ---
        mlp_layers = []
        mlp_layers.append(nn.Linear(features, hidden_dim)); mlp_layers.append(RMSNorm(hidden_dim, eps=rms_norm_eps))
        for _ in range(num_res_blocks): mlp_layers.append(ResBlockRMS(hidden_dim, dropout=dropout_rate, rms_norm_eps=rms_norm_eps))
        mlp_layers.append(RMSNorm(hidden_dim, eps=rms_norm_eps))
        down_proj_hidden = hidden_dim // 2
        mlp_layers.append(SwiGLUFFN(hidden_dim, hidden_features=down_proj_hidden, out_features=down_proj_hidden, dropout=dropout_rate))
        mlp_layers.append(RMSNorm(down_proj_hidden, eps=rms_norm_eps))
        mlp_layers.append(nn.Linear(down_proj_hidden, num_classes))
        self.mlp_head = nn.Sequential(*mlp_layers)
        # --- Validate Output Mode ---
        # (Warnings can be added here if desired, but functionality handled in forward)

    def forward(self, x: torch.Tensor):
        if self.use_attention and self.attention is not None:
            x_seq = x.unsqueeze(1); attn_output, _ = self.attention(x_seq, x_seq, x_seq); x = self.norm_attn(x + attn_output.squeeze(1))
        logits = self.mlp_head(x.to(HEAD_DTYPE)) # Ensure input to MLP has correct dtype
        # --- Apply Final Activation ---
        output = None
        if self.output_mode == 'linear': output = logits
        elif self.output_mode == 'sigmoid': output = torch.sigmoid(logits)
        elif self.output_mode == 'softmax': output = F.softmax(logits, dim=-1)
        elif self.output_mode == 'tanh_scaled': output = (torch.tanh(logits) + 1.0) / 2.0
        else: raise RuntimeError(f"Invalid output_mode '{self.output_mode}'.")
        if self.num_classes == 1 and output.ndim == 2 and output.shape[1] == 1: output = output.squeeze(-1)
        return output

# --- Constants and Model Loading ---

# Option 1: Files are in the Space repo (e.g., in a 'model' folder)
# MODEL_DIR = "model"
# HEAD_MODEL_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000_s9K.safetensors"
# CONFIG_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000.config.json" # Assuming config matches base name
# HEAD_MODEL_PATH = os.path.join(MODEL_DIR, HEAD_MODEL_FILENAME)
# CONFIG_PATH = os.path.join(MODEL_DIR, CONFIG_FILENAME)

# Option 2: Download from Hub
# Replace with your HF username and repo name
HUB_REPO_ID = "Enferlain/lumi-classifier" # Or wherever you uploaded the model
# Use the specific checkpoint you want (e.g., s9k or the best_val one)
HEAD_MODEL_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000_s6K_best_val.safetensors"
# Usually config corresponds to the base run name, not a specific step
CONFIG_FILENAME = "AnatomyFlaws-v11.3_adabelief_fl_naflex_3000.config.json"

print("Downloading model files if necessary...")
try:
    HEAD_MODEL_PATH = hf_hub_download(repo_id=HUB_REPO_ID, filename=HEAD_MODEL_FILENAME)
    CONFIG_PATH = hf_hub_download(repo_id=HUB_REPO_ID, filename=CONFIG_FILENAME)
    print("Files downloaded/found successfully.")
except Exception as e:
    print(f"ERROR downloading files from {HUB_REPO_ID}: {e}")
    print("Please ensure the files exist on the Hub or place them in a local 'model' folder.")
    # Optionally exit or fallback
    exit(1) # Exit if essential files aren't available


# --- Load Config ---
print(f"Loading config from: {CONFIG_PATH}")
config = {}
try:
    with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
        config = json.load(f)
except Exception as e:
    print(f"ERROR loading config file: {e}"); exit(1)

# --- Load Vision Model ---
BASE_VISION_MODEL_NAME = config.get("base_vision_model", "google/siglip2-so400m-patch16-naflex")
print(f"Loading vision model: {BASE_VISION_MODEL_NAME}")
try:
    hf_processor = AutoProcessor.from_pretrained(BASE_VISION_MODEL_NAME)
    vision_model = AutoModel.from_pretrained(
        BASE_VISION_MODEL_NAME, torch_dtype=VISION_DTYPE
    ).to(DEVICE).eval()
    print("Vision model loaded.")
except Exception as e:
    print(f"ERROR loading vision model: {e}"); exit(1)

# --- Load HybridHeadModel ---
print(f"Loading head model: {HEAD_MODEL_PATH}")
head_model = None
try:
    state_dict = load_file(HEAD_MODEL_PATH, device='cpu')
    # Infer details from config - use defaults matching the successful run
    features = config.get("features", 1152)
    num_classes = config.get("num_classes", 2) # Should be 2 for focal loss run
    output_mode = config.get("output_mode", "linear") # Should be linear
    hidden_dim = config.get("hidden_dim", 1280)
    num_res_blocks = config.get("num_res_blocks", 3)
    dropout_rate = config.get("dropout_rate", 0.3) # Use the high dropout from best run
    use_attention = config.get("use_attention", True) # Use attention was likely True
    num_attn_heads = config.get("num_attn_heads", 16)
    attn_dropout = config.get("attn_dropout", 0.3) # Use the high dropout
    rms_norm_eps= config.get("rms_norm_eps", 1e-6)

    head_model = HybridHeadModel(
        features=features, hidden_dim=hidden_dim, num_classes=num_classes,
        use_attention=use_attention, num_attn_heads=num_attn_heads, attn_dropout=attn_dropout,
        num_res_blocks=num_res_blocks, dropout_rate=dropout_rate, rms_norm_eps=rms_norm_eps,
        output_mode=output_mode
    )
    missing, unexpected = head_model.load_state_dict(state_dict, strict=False)
    if missing: print(f"Warning: Missing keys loading head: {missing}")
    if unexpected: print(f"Warning: Unexpected keys loading head: {unexpected}")
    head_model.to(DEVICE).eval()
    print("Head model loaded.")
except Exception as e:
    print(f"ERROR loading head model: {e}"); exit(1)

# --- Label Mapping ---
# Assume labels are '0': Bad, '1': Good from config or default
LABELS = config.get("labels", {'0': 'Bad Anatomy', '1': 'Good Anatomy'})
LABEL_NAMES = {
    0: LABELS.get('0', 'Class 0'),
    1: LABELS.get('1', 'Class 1')
}
print(f"Using Labels: {LABEL_NAMES}")

# --- Prediction Function ---
def predict_anatomy(image: Image.Image):
    """Takes PIL Image, returns dict of class probabilities."""
    if image is None: return {"Error": "No image provided"}
    try:
        pil_image = image.convert("RGB")

        # 1. Extract SigLIP NaFlex Embedding
        with torch.no_grad():
            inputs = hf_processor(images=[pil_image], return_tensors="pt", max_num_patches=1024)
            pixel_values = inputs.get("pixel_values").to(device=DEVICE, dtype=VISION_DTYPE)
            attention_mask = inputs.get("pixel_attention_mask").to(device=DEVICE)
            spatial_shapes = inputs.get("spatial_shapes")
            model_call_kwargs = {"pixel_values": pixel_values, "attention_mask": attention_mask,
                                 "spatial_shapes": torch.tensor(spatial_shapes, dtype=torch.long).to(DEVICE)}

            vision_model_component = getattr(vision_model, 'vision_model', vision_model) # Handle potential nesting
            emb = vision_model_component(**model_call_kwargs).pooler_output
            if emb is None: raise ValueError("Failed to get embedding.")

            # L2 Norm
            norm = torch.linalg.norm(emb.float(), dim=-1, keepdim=True).clamp(min=1e-8)
            emb_normalized = emb / norm.to(emb.dtype)

        # 2. Obtain Prediction from HybridHeadModel Head
        with torch.no_grad():
            prediction = head_model(emb_normalized.to(DEVICE, dtype=HEAD_DTYPE))

        # 3. Format Output Probabilities
        output_probs = {}
        output_mode = getattr(head_model, 'output_mode', 'linear')

        if head_model.num_classes == 1:
            logit = prediction.squeeze().item()
            prob_good = torch.sigmoid(torch.tensor(logit)).item() if output_mode == 'linear' else logit
            output_probs[LABEL_NAMES[0]] = 1.0 - prob_good
            output_probs[LABEL_NAMES[1]] = prob_good
        elif head_model.num_classes == 2:
            if output_mode == 'linear':
                probs = F.softmax(prediction.squeeze().float(), dim=-1) # Use float for softmax stability
            else: # Assume sigmoid or already softmax
                probs = prediction.squeeze().float()
            output_probs[LABEL_NAMES[0]] = probs[0].item()
            output_probs[LABEL_NAMES[1]] = probs[1].item()
        else:
             output_probs["Error"] = f"Unsupported num_classes: {head_model.num_classes}"

        # Convert to percentage strings for gr.Label maybe? Or keep floats? Keep floats.
        # output_formatted = {k: f"{v:.1%}" for k, v in output_probs.items()}
        return output_probs

    except Exception as e:
        print(f"Error during prediction: {e}\n{traceback.format_exc()}")
        return {"Error": str(e)}

# --- Gradio Interface ---
DESCRIPTION = """
## Anatomy Flaw Classifier Demo ✨ (Based on SigLIP Naflex + Hybrid Head)
Upload an image to classify its anatomy as 'Good' or 'Bad'.
This model uses embeddings from **google/siglip2-so400m-patch16-naflex**
and a custom **HybridHeadModel** fine-tuned for anatomy classification.
"""

# Add example images if you have some in an 'examples' folder in the Space repo
EXAMPLE_DIR = "examples"
examples = []
if os.path.isdir(EXAMPLE_DIR):
    examples = [os.path.join(EXAMPLE_DIR, fname) for fname in sorted(os.listdir(EXAMPLE_DIR)) if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]

interface = gr.Interface(
    fn=predict_anatomy,
    inputs=gr.Image(type="pil", label="Input Image"),
    outputs=gr.Label(label="Class Probabilities", num_top_classes=2), # Show top 2 classes
    title="Lumi's Anatomy Classifier Demo",
    description=DESCRIPTION,
    examples=examples if examples else None,
    allow_flagging="never",
    cache_examples=False # Disable caching if examples change or loading is fast
)

if __name__ == "__main__":
    interface.launch()