็™ฝ้นญๅ…ˆ็”Ÿ
init
abd2a81
raw
history blame
17.6 kB
import fnmatch
import os.path
import pathlib
import random
import sys
import time
from collections import defaultdict
import shapely.geometry
import shapely.wkt
import multiprocess
import itertools
import skimage.io
import numpy as np
from tqdm import tqdm
import torch
import torch.utils.data
import torchvision
from lydorn_utils import run_utils, image_utils, polygon_utils, geo_utils
from lydorn_utils import print_utils
from lydorn_utils import python_utils
from torch_lydorn.torchvision.datasets import utils
class xView2Dataset(torch.utils.data.Dataset):
"""
xView2 xBD dataset: https://xview2.org/
"""
def __init__(self, root: str, fold: str = "train", pre_process: bool = True,
patch_size: int = None,
pre_transform=None, transform=None, small: bool = False, pool_size: int = 1, raw_dirname: str = "raw",
processed_dirname: str = "processed"):
"""
@param root:
@param fold:
@param pre_process: If True, the dataset will be pre-processed first, saving training patches on disk. If False, data will be serve on-the-fly without any patching.
@param patch_size:
@param pre_transform:
@param transform:
@param small: If True, use a small subset of the dataset (for testing)
@param pool_size:
@param processed_dirname:
"""
self.root = root
self.fold = fold
self.pre_process = pre_process
self.patch_size = patch_size
self.pre_transform = pre_transform
self.transform = transform
self.small = small
if self.small:
print_utils.print_info("INFO: Using small version of the xView2 xBD dataset.")
self.pool_size = pool_size
self.raw_dirname = raw_dirname
if self.pre_process:
# Setup of pre-process
self.processed_dirpath = os.path.join(self.root, processed_dirname, self.fold)
stats_filepath = os.path.join(self.processed_dirpath, "stats-small.pt" if self.small else "stats.pt")
processed_relative_paths_filepath = os.path.join(self.processed_dirpath,
"processed_paths-small.json" if self.small else "processed_paths.json")
# Check if dataset has finished pre-processing by checking processed_relative_paths_filepath:
if os.path.exists(processed_relative_paths_filepath):
# Process done, load stats and processed_relative_paths
self.stats = torch.load(stats_filepath)
self.processed_relative_paths = python_utils.load_json(processed_relative_paths_filepath)
else:
# Pre-process not finished, launch it:
tile_info_list = self.get_tile_info_list()
self.stats = self.process(tile_info_list)
# Save stats
torch.save(self.stats, stats_filepath)
# Save processed_relative_paths
self.processed_relative_paths = [tile_info["processed_relative_filepath"] for tile_info in tile_info_list]
python_utils.save_json(processed_relative_paths_filepath, self.processed_relative_paths)
else:
# Setup data sample list
self.tile_info_list = self.get_tile_info_list()
def get_tile_info_list(self):
tile_info_list = []
fold_dirpath = os.path.join(self.root, self.raw_dirname, self.fold)
images_dirpath = os.path.join(fold_dirpath, "images")
image_filenames = fnmatch.filter(os.listdir(images_dirpath), "*_pre_disaster.png")
image_filenames = sorted(image_filenames)
disaster_samples_dict = defaultdict(int)
for image_filename in image_filenames:
name_split = image_filename.split("_")
disaster = name_split[0]
if self.small:
disaster_samples_dict[disaster] += 1
if 10 < disaster_samples_dict[disaster]:
continue # Skip this sample as there is already enough for the small dataset
number = int(name_split[1])
tile_info = {
"name": f"{disaster}_{number:08d}",
"disaster": disaster,
"number": number,
"image_filepath": os.path.join(fold_dirpath, "images", f"{disaster}_{number:08d}_pre_disaster.png"),
"label_filepath": os.path.join(fold_dirpath, "labels", f"{disaster}_{number:08d}_pre_disaster.json"),
"processed_relative_filepath": os.path.join(disaster, f"{number:08d}.pt")
}
tile_info_list.append(tile_info)
return tile_info_list
def process(self, tile_info_list):
# os.makedirs(os.path.join(self.root, self.processed_dirname), exist_ok=True)
with multiprocess.Pool(self.pool_size) as p:
list_of_stats = list(
tqdm(p.imap(self._process_one, tile_info_list), total=len(tile_info_list), desc="Process"))
# Aggregate stats
mean_per_disaster = defaultdict(list)
var_per_disaster = defaultdict(list)
class_freq = []
for stats in list_of_stats:
mean_per_disaster[stats["disaster"]].append(stats["mean"])
var_per_disaster[stats["disaster"]].append(stats["var"])
class_freq.append(stats["class_freq"])
stats = {
"mean": {},
"std": {},
"class_freq": None
}
for disaster in mean_per_disaster.keys():
stats["mean"][disaster] = np.mean(np.stack(mean_per_disaster[disaster], axis=0), axis=0)
stats["std"][disaster] = np.sqrt(np.mean(np.stack(var_per_disaster[disaster], axis=0), axis=0))
stats["class_freq"] = np.mean(np.stack(class_freq, axis=0), axis=0)
return stats
def load_raw_data(self, tile_info):
# Image:
tile_info["image"] = skimage.io.imread(tile_info["image_filepath"])
assert len(tile_info["image"].shape) == 3 and tile_info["image"].shape[
2] == 3, f"image should have shape (H, W, 3), not {tile_info['image'].shape}..."
# Annotations:
label_json = python_utils.load_json(tile_info["label_filepath"])
features_xy = label_json["features"]["xy"]
tile_info["gt_polygons"] = [shapely.wkt.loads(obj["wkt"]) for obj in features_xy]
return tile_info
def _process_one(self, tile_info):
# --- Init
processed_tile_filepath = os.path.join(self.processed_dirpath, tile_info["processed_relative_filepath"])
processed_tile_dirpath = os.path.dirname(processed_tile_filepath)
stats_filepath = os.path.join(processed_tile_dirpath, f"{tile_info['number']:08d}.stats.pt")
os.makedirs(processed_tile_dirpath, exist_ok=True)
# --- Check if tile has been processed already
if os.path.exists(stats_filepath):
stats = torch.load(stats_filepath)
return stats
tile_info = self.load_raw_data(tile_info)
tile_info = self.pre_transform(tile_info)
# Compute stats
stats = {
"mean": np.mean(tile_info["image"].reshape(-1, tile_info["image"].shape[-1]), axis=0) / 255,
"var": np.var(tile_info["image"].reshape(-1, tile_info["image"].shape[-1]), axis=0) / 255,
"class_freq": np.mean(tile_info["gt_polygons_image"], axis=(0, 1)) / 255,
"disaster": tile_info["disaster"] # Add disaster name to stats for aggregating per disaster
}
# Save data
torch.save(tile_info, processed_tile_filepath)
torch.save(stats, stats_filepath)
return stats
def __len__(self):
if self.pre_process:
return len(self.processed_relative_paths)
else:
return len(self.tile_info_list)
def __getitem__(self, idx):
if self.pre_process:
filepath = os.path.join(self.processed_dirpath, self.processed_relative_paths[idx])
data = torch.load(filepath)
data["image_mean"] = self.stats["mean"][data["disaster"]]
data["image_std"] = self.stats["std"][data["disaster"]]
data["class_freq"] = self.stats["class_freq"]
else:
tile_info = self.tile_info_list[idx]
# Load raw data
data = self.load_raw_data(tile_info)
raise NotImplementedError("Need to implement mean and std computation")
# --- Crop to path_size
height, width, _ = data["image"].shape
pre_crop_image_norm = data["image"].shape[0] + data["image"].shape[1]
crop_i = random.randint(0, height - self.patch_size)
crop_j = random.randint(0, width - self.patch_size)
data["image"] = data["image"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["gt_polygons_image"] = data["gt_polygons_image"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["gt_crossfield_angle"] = data["gt_crossfield_angle"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["distances"] = data["distances"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["sizes"] = data["sizes"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
post_crop_image_norm = data["image"].shape[0] + data["image"].shape[1]
# Sizes and distances are affected by cropping because they are relative to the image's norm (height + width).
# All non-one pixels have to be renormalized:
size_ratio = pre_crop_image_norm / post_crop_image_norm
data["distances"][data["distances"] != 1] *= size_ratio
data["sizes"][data["sizes"] != 1] *= size_ratio
# ---
data = self.transform(data)
return data
def main():
# Test using transforms from the frame_field_learning project:
from frame_field_learning import data_transforms
config = {
"data_dir_candidates": [
"/data/titane/user/nigirard/data",
"~/data",
"/data"
],
"dataset_params": {
"root_dirname": "xview2_xbd_dataset",
"pre_process": True,
"small": False,
"data_patch_size": 725,
"input_patch_size": 512,
"train_fraction": 0.75
},
"num_workers": 8,
"data_aug_params": {
"enable": True,
"vflip": True,
"affine": True,
"scaling": [0.9, 1.1],
"color_jitter": True,
"device": "cuda"
}
}
# Find data_dir
data_dir = python_utils.choose_first_existing_path(config["data_dir_candidates"])
if data_dir is None:
print_utils.print_error("ERROR: Data directory not found!")
exit()
else:
print_utils.print_info("Using data from {}".format(data_dir))
root_dir = os.path.join(data_dir, config["dataset_params"]["root_dirname"])
# --- Transforms: --- #
# --- pre-processing transform (done once then saved on disk):
# --- Online transform done on the host (CPU):
online_cpu_transform = data_transforms.get_online_cpu_transform(config,
augmentations=config["data_aug_params"]["enable"])
train_online_cuda_transform = data_transforms.get_online_cuda_transform(config,
augmentations=config["data_aug_params"][
"enable"])
kwargs = {
"pre_process": config["dataset_params"]["pre_process"],
"transform": online_cpu_transform,
"patch_size": config["dataset_params"]["data_patch_size"],
"pre_transform": data_transforms.get_offline_transform_patch(),
"small": config["dataset_params"]["small"],
"pool_size": config["num_workers"],
}
# --- --- #
fold = "train"
if fold == "train":
dataset = xView2Dataset(root_dir, fold="train", **kwargs)
elif fold == "val":
dataset = xView2Dataset(root_dir, fold="train", **kwargs)
elif fold == "test":
dataset = xView2Dataset(root_dir, fold="test", **kwargs)
else:
raise NotImplementedError
print(f"dataset has {len(dataset)} samples.")
print("# --- Sample 0 --- #")
sample = dataset[0]
for key, item in sample.items():
print("{}: {}".format(key, type(item)))
print("# --- Samples --- #")
# for data in tqdm(dataset):
# pass
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=config["num_workers"])
print("# --- Batches --- #")
for batch in tqdm(data_loader):
# batch["distances"] = batch["distances"].float()
# batch["sizes"] = batch["sizes"].float()
# im = np.array(batch["image"][0])
# im = np.moveaxis(im, 0, -1)
# skimage.io.imsave('im_before_transform.png', im)
#
# distances = np.array(batch["distances"][0])
# distances = np.moveaxis(distances, 0, -1)
# skimage.io.imsave('distances_before_transform.png', distances)
#
# sizes = np.array(batch["sizes"][0])
# sizes = np.moveaxis(sizes, 0, -1)
# skimage.io.imsave('sizes_before_transform.png', sizes)
print("----")
print(batch["name"])
print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
im = np.array(batch["image"][0])
im = np.moveaxis(im, 0, -1)
skimage.io.imsave('im.png', im)
if "gt_polygons_image" in batch:
print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(),
batch["gt_polygons_image"].max().item())
seg = np.array(batch["gt_polygons_image"][0]) / 255
seg = np.moveaxis(seg, 0, -1)
seg_display = utils.get_seg_display(seg)
seg_display = (seg_display * 255).astype(np.uint8)
skimage.io.imsave("gt_seg.png", seg_display)
if "gt_crossfield_angle" in batch:
print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(),
batch["gt_crossfield_angle"].max().item())
gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)
if "distances" in batch:
print("distances:", batch["distances"].shape, batch["distances"].float().min().item(),
batch["distances"].float().max().item())
distances = np.array(batch["distances"][0])
distances = np.moveaxis(distances, 0, -1)
skimage.io.imsave('distances.png', distances)
if "sizes" in batch:
print("sizes:", batch["sizes"].shape, batch["sizes"].float().min().item(), batch["sizes"].float().max().item())
sizes = np.array(batch["sizes"][0])
sizes = np.moveaxis(sizes, 0, -1)
skimage.io.imsave('sizes.png', sizes)
# valid_mask = np.array(batch["valid_mask"][0])
# valid_mask = np.moveaxis(valid_mask, 0, -1)
# skimage.io.imsave('valid_mask.png', valid_mask)
input("Press enter to continue...")
print("Apply online tranform:")
batch = utils.batch_to_cuda(batch)
batch = train_online_cuda_transform(batch)
batch = utils.batch_to_cpu(batch)
print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(),
batch["gt_polygons_image"].max().item())
print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(),
batch["gt_crossfield_angle"].max().item())
# print("distances:", batch["distances"].shape, batch["distances"].min().item(), batch["distances"].max().item())
# print("sizes:", batch["sizes"].shape, batch["sizes"].min().item(), batch["sizes"].max().item())
# Save output to visualize
seg = np.array(batch["gt_polygons_image"][0])
seg = np.moveaxis(seg, 0, -1)
seg_display = utils.get_seg_display(seg)
seg_display = (seg_display * 255).astype(np.uint8)
skimage.io.imsave("gt_seg.png", seg_display)
im = np.array(batch["image"][0])
im = np.moveaxis(im, 0, -1)
skimage.io.imsave('im.png', im)
gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)
distances = np.array(batch["distances"][0])
distances = np.moveaxis(distances, 0, -1)
skimage.io.imsave('distances.png', distances)
sizes = np.array(batch["sizes"][0])
sizes = np.moveaxis(sizes, 0, -1)
skimage.io.imsave('sizes.png', sizes)
# valid_mask = np.array(batch["valid_mask"][0])
# valid_mask = np.moveaxis(valid_mask, 0, -1)
# skimage.io.imsave('valid_mask.png', valid_mask)
input("Press enter to continue...")
if __name__ == '__main__':
main()