File size: 17,566 Bytes
abd2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import fnmatch
import os.path
import pathlib
import random
import sys
import time
from collections import defaultdict

import shapely.geometry
import shapely.wkt
import multiprocess
import itertools
import skimage.io
import numpy as np

from tqdm import tqdm

import torch
import torch.utils.data
import torchvision

from lydorn_utils import run_utils, image_utils, polygon_utils, geo_utils
from lydorn_utils import print_utils
from lydorn_utils import python_utils

from torch_lydorn.torchvision.datasets import utils


class xView2Dataset(torch.utils.data.Dataset):
    """
    xView2 xBD dataset: https://xview2.org/
    """

    def __init__(self, root: str, fold: str = "train", pre_process: bool = True,
                 patch_size: int = None,
                 pre_transform=None, transform=None, small: bool = False, pool_size: int = 1, raw_dirname: str = "raw",
                 processed_dirname: str = "processed"):
        """

        @param root:
        @param fold:
        @param pre_process: If True, the dataset will be pre-processed first, saving training patches on disk. If False, data will be serve on-the-fly without any patching.
        @param patch_size:
        @param pre_transform:
        @param transform:
        @param small: If True, use a small subset of the dataset (for testing)
        @param pool_size:
        @param processed_dirname:
        """
        self.root = root
        self.fold = fold
        self.pre_process = pre_process
        self.patch_size = patch_size
        self.pre_transform = pre_transform
        self.transform = transform
        self.small = small
        if self.small:
            print_utils.print_info("INFO: Using small version of the xView2 xBD dataset.")
        self.pool_size = pool_size
        self.raw_dirname = raw_dirname

        if self.pre_process:
            # Setup of pre-process
            self.processed_dirpath = os.path.join(self.root, processed_dirname, self.fold)
            stats_filepath = os.path.join(self.processed_dirpath, "stats-small.pt" if self.small else "stats.pt")
            processed_relative_paths_filepath = os.path.join(self.processed_dirpath,
                                                        "processed_paths-small.json" if self.small else "processed_paths.json")

            # Check if dataset has finished pre-processing by checking processed_relative_paths_filepath:
            if os.path.exists(processed_relative_paths_filepath):
                # Process done, load stats and processed_relative_paths
                self.stats = torch.load(stats_filepath)
                self.processed_relative_paths = python_utils.load_json(processed_relative_paths_filepath)
            else:
                # Pre-process not finished, launch it:
                tile_info_list = self.get_tile_info_list()
                self.stats = self.process(tile_info_list)
                # Save stats
                torch.save(self.stats, stats_filepath)
                # Save processed_relative_paths
                self.processed_relative_paths = [tile_info["processed_relative_filepath"] for tile_info in tile_info_list]
                python_utils.save_json(processed_relative_paths_filepath, self.processed_relative_paths)
        else:
            # Setup data sample list
            self.tile_info_list = self.get_tile_info_list()

    def get_tile_info_list(self):
        tile_info_list = []
        fold_dirpath = os.path.join(self.root, self.raw_dirname, self.fold)
        images_dirpath = os.path.join(fold_dirpath, "images")
        image_filenames = fnmatch.filter(os.listdir(images_dirpath), "*_pre_disaster.png")
        image_filenames = sorted(image_filenames)
        disaster_samples_dict = defaultdict(int)
        for image_filename in image_filenames:
            name_split = image_filename.split("_")
            disaster = name_split[0]
            if self.small:
                disaster_samples_dict[disaster] += 1
                if 10 < disaster_samples_dict[disaster]:
                    continue  # Skip this sample as there is already enough for the small dataset
            number = int(name_split[1])
            tile_info = {
                "name": f"{disaster}_{number:08d}",
                "disaster": disaster,
                "number": number,
                "image_filepath": os.path.join(fold_dirpath, "images", f"{disaster}_{number:08d}_pre_disaster.png"),
                "label_filepath": os.path.join(fold_dirpath, "labels", f"{disaster}_{number:08d}_pre_disaster.json"),
                "processed_relative_filepath": os.path.join(disaster, f"{number:08d}.pt")
            }
            tile_info_list.append(tile_info)
        return tile_info_list

    def process(self, tile_info_list):
        # os.makedirs(os.path.join(self.root, self.processed_dirname), exist_ok=True)
        with multiprocess.Pool(self.pool_size) as p:
            list_of_stats = list(
                tqdm(p.imap(self._process_one, tile_info_list), total=len(tile_info_list), desc="Process"))

         # Aggregate stats
        mean_per_disaster = defaultdict(list)
        var_per_disaster = defaultdict(list)
        class_freq = []
        for stats in list_of_stats:
            mean_per_disaster[stats["disaster"]].append(stats["mean"])
            var_per_disaster[stats["disaster"]].append(stats["var"])
            class_freq.append(stats["class_freq"])
        stats = {
            "mean": {},
            "std": {},
            "class_freq": None
        }
        for disaster in mean_per_disaster.keys():
            stats["mean"][disaster] = np.mean(np.stack(mean_per_disaster[disaster], axis=0), axis=0)
            stats["std"][disaster] = np.sqrt(np.mean(np.stack(var_per_disaster[disaster], axis=0), axis=0))
        stats["class_freq"] = np.mean(np.stack(class_freq, axis=0), axis=0)

        return stats

    def load_raw_data(self, tile_info):
        # Image:
        tile_info["image"] = skimage.io.imread(tile_info["image_filepath"])
        assert len(tile_info["image"].shape) == 3 and tile_info["image"].shape[
            2] == 3, f"image should have shape (H, W, 3), not {tile_info['image'].shape}..."

        # Annotations:
        label_json = python_utils.load_json(tile_info["label_filepath"])
        features_xy = label_json["features"]["xy"]
        tile_info["gt_polygons"] = [shapely.wkt.loads(obj["wkt"]) for obj in features_xy]

        return tile_info

    def _process_one(self, tile_info):
        # --- Init
        processed_tile_filepath = os.path.join(self.processed_dirpath, tile_info["processed_relative_filepath"])
        processed_tile_dirpath = os.path.dirname(processed_tile_filepath)
        stats_filepath = os.path.join(processed_tile_dirpath, f"{tile_info['number']:08d}.stats.pt")
        os.makedirs(processed_tile_dirpath, exist_ok=True)

        # --- Check if tile has been processed already
        if os.path.exists(stats_filepath):
            stats = torch.load(stats_filepath)
            return stats

        tile_info = self.load_raw_data(tile_info)

        tile_info = self.pre_transform(tile_info)

        # Compute stats
        stats = {
            "mean": np.mean(tile_info["image"].reshape(-1, tile_info["image"].shape[-1]), axis=0) / 255,
            "var": np.var(tile_info["image"].reshape(-1, tile_info["image"].shape[-1]), axis=0) / 255,
            "class_freq": np.mean(tile_info["gt_polygons_image"], axis=(0, 1)) / 255,
            "disaster": tile_info["disaster"]  # Add disaster name to stats for aggregating per disaster
        }

        # Save data
        torch.save(tile_info, processed_tile_filepath)
        torch.save(stats, stats_filepath)

        return stats

    def __len__(self):
        if self.pre_process:
            return len(self.processed_relative_paths)
        else:
            return len(self.tile_info_list)

    def __getitem__(self, idx):
        if self.pre_process:
            filepath = os.path.join(self.processed_dirpath, self.processed_relative_paths[idx])
            data = torch.load(filepath)
            data["image_mean"] = self.stats["mean"][data["disaster"]]
            data["image_std"] = self.stats["std"][data["disaster"]]
            data["class_freq"] = self.stats["class_freq"]
        else:
            tile_info = self.tile_info_list[idx]
            # Load raw data
            data = self.load_raw_data(tile_info)
            raise NotImplementedError("Need to implement mean and std computation")

        # --- Crop to path_size
        height, width, _ = data["image"].shape
        pre_crop_image_norm = data["image"].shape[0] + data["image"].shape[1]
        crop_i = random.randint(0, height - self.patch_size)
        crop_j = random.randint(0, width - self.patch_size)
        data["image"] = data["image"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
        data["gt_polygons_image"] = data["gt_polygons_image"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
        data["gt_crossfield_angle"] = data["gt_crossfield_angle"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
        data["distances"] = data["distances"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
        data["sizes"] = data["sizes"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
        post_crop_image_norm = data["image"].shape[0] + data["image"].shape[1]
        # Sizes and distances are affected by cropping because they are relative to the image's norm (height + width).
        # All non-one pixels have to be renormalized:
        size_ratio = pre_crop_image_norm / post_crop_image_norm
        data["distances"][data["distances"] != 1] *= size_ratio
        data["sizes"][data["sizes"] != 1] *= size_ratio
        # ---

        data = self.transform(data)
        return data


def main():
    # Test using transforms from the frame_field_learning project:
    from frame_field_learning import data_transforms

    config = {
        "data_dir_candidates": [
            "/data/titane/user/nigirard/data",
            "~/data",
            "/data"
        ],
        "dataset_params": {
            "root_dirname": "xview2_xbd_dataset",
            "pre_process": True,
            "small": False,
            "data_patch_size": 725,
            "input_patch_size": 512,

            "train_fraction": 0.75
        },
        "num_workers": 8,
        "data_aug_params": {
            "enable": True,
            "vflip": True,
            "affine": True,
            "scaling": [0.9, 1.1],
            "color_jitter": True,
            "device": "cuda"
        }
    }

    # Find data_dir
    data_dir = python_utils.choose_first_existing_path(config["data_dir_candidates"])
    if data_dir is None:
        print_utils.print_error("ERROR: Data directory not found!")
        exit()
    else:
        print_utils.print_info("Using data from {}".format(data_dir))
    root_dir = os.path.join(data_dir, config["dataset_params"]["root_dirname"])

    # --- Transforms: --- #
    # --- pre-processing transform (done once then saved on disk):
    # --- Online transform done on the host (CPU):
    online_cpu_transform = data_transforms.get_online_cpu_transform(config,
                                                                    augmentations=config["data_aug_params"]["enable"])
    train_online_cuda_transform = data_transforms.get_online_cuda_transform(config,
                                                                            augmentations=config["data_aug_params"][
                                                                                "enable"])
    kwargs = {
        "pre_process": config["dataset_params"]["pre_process"],
        "transform": online_cpu_transform,
        "patch_size": config["dataset_params"]["data_patch_size"],
        "pre_transform": data_transforms.get_offline_transform_patch(),
        "small": config["dataset_params"]["small"],
        "pool_size": config["num_workers"],
    }
    # --- --- #
    fold = "train"
    if fold == "train":
        dataset = xView2Dataset(root_dir, fold="train", **kwargs)
    elif fold == "val":
        dataset = xView2Dataset(root_dir, fold="train", **kwargs)
    elif fold == "test":
        dataset = xView2Dataset(root_dir, fold="test", **kwargs)
    else:
        raise NotImplementedError

    print(f"dataset has {len(dataset)} samples.")
    print("# --- Sample 0 --- #")
    sample = dataset[0]
    for key, item in sample.items():
        print("{}: {}".format(key, type(item)))

    print("# --- Samples --- #")
    # for data in tqdm(dataset):
    #     pass

    data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=config["num_workers"])
    print("# --- Batches --- #")
    for batch in tqdm(data_loader):

        # batch["distances"] = batch["distances"].float()
        # batch["sizes"] = batch["sizes"].float()

        # im = np.array(batch["image"][0])
        # im = np.moveaxis(im, 0, -1)
        # skimage.io.imsave('im_before_transform.png', im)
        #
        # distances = np.array(batch["distances"][0])
        # distances = np.moveaxis(distances, 0, -1)
        # skimage.io.imsave('distances_before_transform.png', distances)
        #
        # sizes = np.array(batch["sizes"][0])
        # sizes = np.moveaxis(sizes, 0, -1)
        # skimage.io.imsave('sizes_before_transform.png', sizes)

        print("----")
        print(batch["name"])

        print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
        im = np.array(batch["image"][0])
        im = np.moveaxis(im, 0, -1)
        skimage.io.imsave('im.png', im)

        if "gt_polygons_image" in batch:
            print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(),
                  batch["gt_polygons_image"].max().item())
            seg = np.array(batch["gt_polygons_image"][0]) / 255
            seg = np.moveaxis(seg, 0, -1)
            seg_display = utils.get_seg_display(seg)
            seg_display = (seg_display * 255).astype(np.uint8)
            skimage.io.imsave("gt_seg.png", seg_display)

        if "gt_crossfield_angle" in batch:
            print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(),
                  batch["gt_crossfield_angle"].max().item())
            gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
            gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
            skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)

        if "distances" in batch:
            print("distances:", batch["distances"].shape, batch["distances"].float().min().item(),
                  batch["distances"].float().max().item())
            distances = np.array(batch["distances"][0])
            distances = np.moveaxis(distances, 0, -1)
            skimage.io.imsave('distances.png', distances)

        if "sizes" in batch:
            print("sizes:", batch["sizes"].shape, batch["sizes"].float().min().item(), batch["sizes"].float().max().item())
            sizes = np.array(batch["sizes"][0])
            sizes = np.moveaxis(sizes, 0, -1)
            skimage.io.imsave('sizes.png', sizes)

        # valid_mask = np.array(batch["valid_mask"][0])
        # valid_mask = np.moveaxis(valid_mask, 0, -1)
        # skimage.io.imsave('valid_mask.png', valid_mask)

        input("Press enter to continue...")

        print("Apply online tranform:")
        batch = utils.batch_to_cuda(batch)
        batch = train_online_cuda_transform(batch)
        batch = utils.batch_to_cpu(batch)

        print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
        print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(),
              batch["gt_polygons_image"].max().item())
        print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(),
              batch["gt_crossfield_angle"].max().item())
        # print("distances:", batch["distances"].shape, batch["distances"].min().item(), batch["distances"].max().item())
        # print("sizes:", batch["sizes"].shape, batch["sizes"].min().item(), batch["sizes"].max().item())

        # Save output to visualize
        seg = np.array(batch["gt_polygons_image"][0])
        seg = np.moveaxis(seg, 0, -1)
        seg_display = utils.get_seg_display(seg)
        seg_display = (seg_display * 255).astype(np.uint8)
        skimage.io.imsave("gt_seg.png", seg_display)

        im = np.array(batch["image"][0])
        im = np.moveaxis(im, 0, -1)
        skimage.io.imsave('im.png', im)

        gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
        gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
        skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)

        distances = np.array(batch["distances"][0])
        distances = np.moveaxis(distances, 0, -1)
        skimage.io.imsave('distances.png', distances)

        sizes = np.array(batch["sizes"][0])
        sizes = np.moveaxis(sizes, 0, -1)
        skimage.io.imsave('sizes.png', sizes)

        # valid_mask = np.array(batch["valid_mask"][0])
        # valid_mask = np.moveaxis(valid_mask, 0, -1)
        # skimage.io.imsave('valid_mask.png', valid_mask)

        input("Press enter to continue...")


if __name__ == '__main__':
    main()