File size: 17,566 Bytes
abd2a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import fnmatch
import os.path
import pathlib
import random
import sys
import time
from collections import defaultdict
import shapely.geometry
import shapely.wkt
import multiprocess
import itertools
import skimage.io
import numpy as np
from tqdm import tqdm
import torch
import torch.utils.data
import torchvision
from lydorn_utils import run_utils, image_utils, polygon_utils, geo_utils
from lydorn_utils import print_utils
from lydorn_utils import python_utils
from torch_lydorn.torchvision.datasets import utils
class xView2Dataset(torch.utils.data.Dataset):
"""
xView2 xBD dataset: https://xview2.org/
"""
def __init__(self, root: str, fold: str = "train", pre_process: bool = True,
patch_size: int = None,
pre_transform=None, transform=None, small: bool = False, pool_size: int = 1, raw_dirname: str = "raw",
processed_dirname: str = "processed"):
"""
@param root:
@param fold:
@param pre_process: If True, the dataset will be pre-processed first, saving training patches on disk. If False, data will be serve on-the-fly without any patching.
@param patch_size:
@param pre_transform:
@param transform:
@param small: If True, use a small subset of the dataset (for testing)
@param pool_size:
@param processed_dirname:
"""
self.root = root
self.fold = fold
self.pre_process = pre_process
self.patch_size = patch_size
self.pre_transform = pre_transform
self.transform = transform
self.small = small
if self.small:
print_utils.print_info("INFO: Using small version of the xView2 xBD dataset.")
self.pool_size = pool_size
self.raw_dirname = raw_dirname
if self.pre_process:
# Setup of pre-process
self.processed_dirpath = os.path.join(self.root, processed_dirname, self.fold)
stats_filepath = os.path.join(self.processed_dirpath, "stats-small.pt" if self.small else "stats.pt")
processed_relative_paths_filepath = os.path.join(self.processed_dirpath,
"processed_paths-small.json" if self.small else "processed_paths.json")
# Check if dataset has finished pre-processing by checking processed_relative_paths_filepath:
if os.path.exists(processed_relative_paths_filepath):
# Process done, load stats and processed_relative_paths
self.stats = torch.load(stats_filepath)
self.processed_relative_paths = python_utils.load_json(processed_relative_paths_filepath)
else:
# Pre-process not finished, launch it:
tile_info_list = self.get_tile_info_list()
self.stats = self.process(tile_info_list)
# Save stats
torch.save(self.stats, stats_filepath)
# Save processed_relative_paths
self.processed_relative_paths = [tile_info["processed_relative_filepath"] for tile_info in tile_info_list]
python_utils.save_json(processed_relative_paths_filepath, self.processed_relative_paths)
else:
# Setup data sample list
self.tile_info_list = self.get_tile_info_list()
def get_tile_info_list(self):
tile_info_list = []
fold_dirpath = os.path.join(self.root, self.raw_dirname, self.fold)
images_dirpath = os.path.join(fold_dirpath, "images")
image_filenames = fnmatch.filter(os.listdir(images_dirpath), "*_pre_disaster.png")
image_filenames = sorted(image_filenames)
disaster_samples_dict = defaultdict(int)
for image_filename in image_filenames:
name_split = image_filename.split("_")
disaster = name_split[0]
if self.small:
disaster_samples_dict[disaster] += 1
if 10 < disaster_samples_dict[disaster]:
continue # Skip this sample as there is already enough for the small dataset
number = int(name_split[1])
tile_info = {
"name": f"{disaster}_{number:08d}",
"disaster": disaster,
"number": number,
"image_filepath": os.path.join(fold_dirpath, "images", f"{disaster}_{number:08d}_pre_disaster.png"),
"label_filepath": os.path.join(fold_dirpath, "labels", f"{disaster}_{number:08d}_pre_disaster.json"),
"processed_relative_filepath": os.path.join(disaster, f"{number:08d}.pt")
}
tile_info_list.append(tile_info)
return tile_info_list
def process(self, tile_info_list):
# os.makedirs(os.path.join(self.root, self.processed_dirname), exist_ok=True)
with multiprocess.Pool(self.pool_size) as p:
list_of_stats = list(
tqdm(p.imap(self._process_one, tile_info_list), total=len(tile_info_list), desc="Process"))
# Aggregate stats
mean_per_disaster = defaultdict(list)
var_per_disaster = defaultdict(list)
class_freq = []
for stats in list_of_stats:
mean_per_disaster[stats["disaster"]].append(stats["mean"])
var_per_disaster[stats["disaster"]].append(stats["var"])
class_freq.append(stats["class_freq"])
stats = {
"mean": {},
"std": {},
"class_freq": None
}
for disaster in mean_per_disaster.keys():
stats["mean"][disaster] = np.mean(np.stack(mean_per_disaster[disaster], axis=0), axis=0)
stats["std"][disaster] = np.sqrt(np.mean(np.stack(var_per_disaster[disaster], axis=0), axis=0))
stats["class_freq"] = np.mean(np.stack(class_freq, axis=0), axis=0)
return stats
def load_raw_data(self, tile_info):
# Image:
tile_info["image"] = skimage.io.imread(tile_info["image_filepath"])
assert len(tile_info["image"].shape) == 3 and tile_info["image"].shape[
2] == 3, f"image should have shape (H, W, 3), not {tile_info['image'].shape}..."
# Annotations:
label_json = python_utils.load_json(tile_info["label_filepath"])
features_xy = label_json["features"]["xy"]
tile_info["gt_polygons"] = [shapely.wkt.loads(obj["wkt"]) for obj in features_xy]
return tile_info
def _process_one(self, tile_info):
# --- Init
processed_tile_filepath = os.path.join(self.processed_dirpath, tile_info["processed_relative_filepath"])
processed_tile_dirpath = os.path.dirname(processed_tile_filepath)
stats_filepath = os.path.join(processed_tile_dirpath, f"{tile_info['number']:08d}.stats.pt")
os.makedirs(processed_tile_dirpath, exist_ok=True)
# --- Check if tile has been processed already
if os.path.exists(stats_filepath):
stats = torch.load(stats_filepath)
return stats
tile_info = self.load_raw_data(tile_info)
tile_info = self.pre_transform(tile_info)
# Compute stats
stats = {
"mean": np.mean(tile_info["image"].reshape(-1, tile_info["image"].shape[-1]), axis=0) / 255,
"var": np.var(tile_info["image"].reshape(-1, tile_info["image"].shape[-1]), axis=0) / 255,
"class_freq": np.mean(tile_info["gt_polygons_image"], axis=(0, 1)) / 255,
"disaster": tile_info["disaster"] # Add disaster name to stats for aggregating per disaster
}
# Save data
torch.save(tile_info, processed_tile_filepath)
torch.save(stats, stats_filepath)
return stats
def __len__(self):
if self.pre_process:
return len(self.processed_relative_paths)
else:
return len(self.tile_info_list)
def __getitem__(self, idx):
if self.pre_process:
filepath = os.path.join(self.processed_dirpath, self.processed_relative_paths[idx])
data = torch.load(filepath)
data["image_mean"] = self.stats["mean"][data["disaster"]]
data["image_std"] = self.stats["std"][data["disaster"]]
data["class_freq"] = self.stats["class_freq"]
else:
tile_info = self.tile_info_list[idx]
# Load raw data
data = self.load_raw_data(tile_info)
raise NotImplementedError("Need to implement mean and std computation")
# --- Crop to path_size
height, width, _ = data["image"].shape
pre_crop_image_norm = data["image"].shape[0] + data["image"].shape[1]
crop_i = random.randint(0, height - self.patch_size)
crop_j = random.randint(0, width - self.patch_size)
data["image"] = data["image"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["gt_polygons_image"] = data["gt_polygons_image"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["gt_crossfield_angle"] = data["gt_crossfield_angle"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["distances"] = data["distances"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
data["sizes"] = data["sizes"][crop_i:crop_i + self.patch_size, crop_j:crop_j + self.patch_size]
post_crop_image_norm = data["image"].shape[0] + data["image"].shape[1]
# Sizes and distances are affected by cropping because they are relative to the image's norm (height + width).
# All non-one pixels have to be renormalized:
size_ratio = pre_crop_image_norm / post_crop_image_norm
data["distances"][data["distances"] != 1] *= size_ratio
data["sizes"][data["sizes"] != 1] *= size_ratio
# ---
data = self.transform(data)
return data
def main():
# Test using transforms from the frame_field_learning project:
from frame_field_learning import data_transforms
config = {
"data_dir_candidates": [
"/data/titane/user/nigirard/data",
"~/data",
"/data"
],
"dataset_params": {
"root_dirname": "xview2_xbd_dataset",
"pre_process": True,
"small": False,
"data_patch_size": 725,
"input_patch_size": 512,
"train_fraction": 0.75
},
"num_workers": 8,
"data_aug_params": {
"enable": True,
"vflip": True,
"affine": True,
"scaling": [0.9, 1.1],
"color_jitter": True,
"device": "cuda"
}
}
# Find data_dir
data_dir = python_utils.choose_first_existing_path(config["data_dir_candidates"])
if data_dir is None:
print_utils.print_error("ERROR: Data directory not found!")
exit()
else:
print_utils.print_info("Using data from {}".format(data_dir))
root_dir = os.path.join(data_dir, config["dataset_params"]["root_dirname"])
# --- Transforms: --- #
# --- pre-processing transform (done once then saved on disk):
# --- Online transform done on the host (CPU):
online_cpu_transform = data_transforms.get_online_cpu_transform(config,
augmentations=config["data_aug_params"]["enable"])
train_online_cuda_transform = data_transforms.get_online_cuda_transform(config,
augmentations=config["data_aug_params"][
"enable"])
kwargs = {
"pre_process": config["dataset_params"]["pre_process"],
"transform": online_cpu_transform,
"patch_size": config["dataset_params"]["data_patch_size"],
"pre_transform": data_transforms.get_offline_transform_patch(),
"small": config["dataset_params"]["small"],
"pool_size": config["num_workers"],
}
# --- --- #
fold = "train"
if fold == "train":
dataset = xView2Dataset(root_dir, fold="train", **kwargs)
elif fold == "val":
dataset = xView2Dataset(root_dir, fold="train", **kwargs)
elif fold == "test":
dataset = xView2Dataset(root_dir, fold="test", **kwargs)
else:
raise NotImplementedError
print(f"dataset has {len(dataset)} samples.")
print("# --- Sample 0 --- #")
sample = dataset[0]
for key, item in sample.items():
print("{}: {}".format(key, type(item)))
print("# --- Samples --- #")
# for data in tqdm(dataset):
# pass
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=config["num_workers"])
print("# --- Batches --- #")
for batch in tqdm(data_loader):
# batch["distances"] = batch["distances"].float()
# batch["sizes"] = batch["sizes"].float()
# im = np.array(batch["image"][0])
# im = np.moveaxis(im, 0, -1)
# skimage.io.imsave('im_before_transform.png', im)
#
# distances = np.array(batch["distances"][0])
# distances = np.moveaxis(distances, 0, -1)
# skimage.io.imsave('distances_before_transform.png', distances)
#
# sizes = np.array(batch["sizes"][0])
# sizes = np.moveaxis(sizes, 0, -1)
# skimage.io.imsave('sizes_before_transform.png', sizes)
print("----")
print(batch["name"])
print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
im = np.array(batch["image"][0])
im = np.moveaxis(im, 0, -1)
skimage.io.imsave('im.png', im)
if "gt_polygons_image" in batch:
print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(),
batch["gt_polygons_image"].max().item())
seg = np.array(batch["gt_polygons_image"][0]) / 255
seg = np.moveaxis(seg, 0, -1)
seg_display = utils.get_seg_display(seg)
seg_display = (seg_display * 255).astype(np.uint8)
skimage.io.imsave("gt_seg.png", seg_display)
if "gt_crossfield_angle" in batch:
print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(),
batch["gt_crossfield_angle"].max().item())
gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)
if "distances" in batch:
print("distances:", batch["distances"].shape, batch["distances"].float().min().item(),
batch["distances"].float().max().item())
distances = np.array(batch["distances"][0])
distances = np.moveaxis(distances, 0, -1)
skimage.io.imsave('distances.png', distances)
if "sizes" in batch:
print("sizes:", batch["sizes"].shape, batch["sizes"].float().min().item(), batch["sizes"].float().max().item())
sizes = np.array(batch["sizes"][0])
sizes = np.moveaxis(sizes, 0, -1)
skimage.io.imsave('sizes.png', sizes)
# valid_mask = np.array(batch["valid_mask"][0])
# valid_mask = np.moveaxis(valid_mask, 0, -1)
# skimage.io.imsave('valid_mask.png', valid_mask)
input("Press enter to continue...")
print("Apply online tranform:")
batch = utils.batch_to_cuda(batch)
batch = train_online_cuda_transform(batch)
batch = utils.batch_to_cpu(batch)
print("image:", batch["image"].shape, batch["image"].min().item(), batch["image"].max().item())
print("gt_polygons_image:", batch["gt_polygons_image"].shape, batch["gt_polygons_image"].min().item(),
batch["gt_polygons_image"].max().item())
print("gt_crossfield_angle:", batch["gt_crossfield_angle"].shape, batch["gt_crossfield_angle"].min().item(),
batch["gt_crossfield_angle"].max().item())
# print("distances:", batch["distances"].shape, batch["distances"].min().item(), batch["distances"].max().item())
# print("sizes:", batch["sizes"].shape, batch["sizes"].min().item(), batch["sizes"].max().item())
# Save output to visualize
seg = np.array(batch["gt_polygons_image"][0])
seg = np.moveaxis(seg, 0, -1)
seg_display = utils.get_seg_display(seg)
seg_display = (seg_display * 255).astype(np.uint8)
skimage.io.imsave("gt_seg.png", seg_display)
im = np.array(batch["image"][0])
im = np.moveaxis(im, 0, -1)
skimage.io.imsave('im.png', im)
gt_crossfield_angle = np.array(batch["gt_crossfield_angle"][0])
gt_crossfield_angle = np.moveaxis(gt_crossfield_angle, 0, -1)
skimage.io.imsave('gt_crossfield_angle.png', gt_crossfield_angle)
distances = np.array(batch["distances"][0])
distances = np.moveaxis(distances, 0, -1)
skimage.io.imsave('distances.png', distances)
sizes = np.array(batch["sizes"][0])
sizes = np.moveaxis(sizes, 0, -1)
skimage.io.imsave('sizes.png', sizes)
# valid_mask = np.array(batch["valid_mask"][0])
# valid_mask = np.moveaxis(valid_mask, 0, -1)
# skimage.io.imsave('valid_mask.png', valid_mask)
input("Press enter to continue...")
if __name__ == '__main__':
main()
|