SanaSprint / app.py
multimodalart's picture
Update app.py
c7c8e9e verified
raw
history blame
5.04 kB
import gradio as gr
import spaces
import numpy as np
import random
import spaces
import torch
from diffusers import SanaSprintPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
torch_dtype=torch.bfloat16
)
pipe2 = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
torch_dtype=torch.bfloat16
)
pipe.to(device)
pipe2.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=5)
def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Choose the appropriate model based on selected model size
selected_pipe = pipe if model_size == "0.6B" else pipe2
img = selected_pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil"
)
print(img)
return img.images[0], seed
# Different examples for each model size
examples_06B = [
"a majestic castle on a floating island",
"a robotic chef cooking in a futuristic kitchen",
"a magical forest with glowing mushrooms"
]
examples_16B = [
"a steampunk city with airships in the sky",
"a photorealistic fox in a snowy landscape",
"an underwater temple with ancient ruins"
]
# We'll use the appropriate set based on the model selection
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Sana Sprint""")
# Add radio button for model selection
model_size = gr.Radio(
label="Model Size",
choices=["0.6B", "1.6B"],
value="0.6B",
interactive=True
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=1,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2,
)
with gr.Row():
examples_container = gr.Examples(
examples = examples_06B, # Start with 0.6B examples
fn = infer,
inputs = [prompt, model_size],
outputs = [result, seed],
cache_examples="lazy",
label="Example Prompts"
)
# Update examples when model size changes
def update_examples(model_choice):
if model_choice == "0.6B":
return gr.Examples.update(examples=examples_06B)
else:
return gr.Examples.update(examples=examples_16B)
model_size.change(fn=update_examples, inputs=[model_size], outputs=[examples_container])
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs
outputs = [result, seed]
)
demo.launch()