Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,043 Bytes
5e673fa f9854a2 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa 9975067 5e673fa 9975067 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa 5aebc40 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import spaces
import numpy as np
import random
import spaces
import torch
from diffusers import SanaSprintPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
torch_dtype=torch.bfloat16
)
pipe2 = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
torch_dtype=torch.bfloat16
)
pipe.to(device)
pipe2.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=5)
def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Choose the appropriate model based on selected model size
selected_pipe = pipe if model_size == "0.6B" else pipe2
img = selected_pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil"
)
print(img)
return img.images[0], seed
# Different examples for each model size
examples_06B = [
"a majestic castle on a floating island",
"a robotic chef cooking in a futuristic kitchen",
"a magical forest with glowing mushrooms"
]
examples_16B = [
"a steampunk city with airships in the sky",
"a photorealistic fox in a snowy landscape",
"an underwater temple with ancient ruins"
]
# We'll use the appropriate set based on the model selection
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Sana Sprint""")
# Add radio button for model selection
model_size = gr.Radio(
label="Model Size",
choices=["0.6B", "1.6B"],
value="0.6B",
interactive=True
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=1,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2,
)
with gr.Row():
examples_container = gr.Examples(
examples = examples_06B, # Start with 0.6B examples
fn = infer,
inputs = [prompt, model_size],
outputs = [result, seed],
cache_examples="lazy",
label="Example Prompts"
)
# Update examples when model size changes
def update_examples(model_choice):
if model_choice == "0.6B":
return gr.Examples.update(examples=examples_06B)
else:
return gr.Examples.update(examples=examples_16B)
model_size.change(fn=update_examples, inputs=[model_size], outputs=[examples_container])
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs
outputs = [result, seed]
)
demo.launch() |