Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from typing import * | |
from ._helpers import batched | |
__all__ = [ | |
'triangulate', | |
'compute_face_normal', | |
'compute_face_angles', | |
'compute_vertex_normal', | |
'compute_vertex_normal_weighted', | |
'compute_edges', | |
'compute_connected_components', | |
'compute_edge_connected_components', | |
'compute_boundarys', | |
'compute_dual_graph', | |
'remove_unreferenced_vertices', | |
'remove_corrupted_faces', | |
'remove_isolated_pieces', | |
'merge_duplicate_vertices', | |
'subdivide_mesh_simple', | |
'compute_face_tbn', | |
'compute_vertex_tbn', | |
'laplacian', | |
'laplacian_smooth_mesh', | |
'taubin_smooth_mesh', | |
'laplacian_hc_smooth_mesh', | |
] | |
def _group( | |
values: torch.Tensor, | |
required_group_size: Optional[int] = None, | |
return_values: bool = False | |
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]: | |
""" | |
Group values into groups with identical values. | |
Args: | |
values (torch.Tensor): [N] values to group | |
required_group_size (int, optional): required group size. Defaults to None. | |
return_values (bool, optional): return values of groups. Defaults to False. | |
Returns: | |
group (Union[List[torch.Tensor], torch.Tensor]): list of groups or group indices. It will be a list of groups if required_group_size is None, otherwise a tensor of group indices. | |
group_values (Optional[torch.Tensor]): values of groups. Only returned if return_values is True. | |
""" | |
sorted_values, indices = torch.sort(values) | |
nondupe = torch.cat([torch.tensor([True], dtype=torch.bool, device=values.device), sorted_values[1:] != sorted_values[:-1]]) | |
nondupe_indices = torch.cumsum(nondupe, dim=0) - 1 | |
counts = torch.bincount(nondupe_indices) | |
if required_group_size is None: | |
groups = torch.split(indices, counts.tolist()) | |
if return_values: | |
group_values = sorted_values[nondupe] | |
return groups, group_values | |
else: | |
return groups | |
else: | |
counts = counts[nondupe_indices] | |
groups = indices[counts == required_group_size].reshape(-1, required_group_size) | |
if return_values: | |
group_values = sorted_values[nondupe][counts[nondupe] == required_group_size] | |
return groups, group_values | |
else: | |
return groups | |
def triangulate( | |
faces: torch.Tensor, | |
vertices: torch.Tensor = None, | |
backslash: bool = None | |
) -> torch.Tensor: | |
""" | |
Triangulate a polygonal mesh. | |
Args: | |
faces (torch.Tensor): [..., L, P] polygonal faces | |
vertices (torch.Tensor, optional): [..., N, 3] 3-dimensional vertices. | |
If given, the triangulation is performed according to the distance | |
between vertices. Defaults to None. | |
backslash (torch.Tensor, optional): [..., L] boolean array indicating | |
how to triangulate the quad faces. Defaults to None. | |
Returns: | |
(torch.Tensor): [L * (P - 2), 3] triangular faces | |
""" | |
if faces.shape[-1] == 3: | |
return faces | |
P = faces.shape[-1] | |
if vertices is not None: | |
assert faces.shape[-1] == 4, "now only support quad mesh" | |
if backslash is None: | |
faces_idx = faces.long() | |
backslash = torch.norm(vertices[faces_idx[..., 0]] - vertices[faces_idx[..., 2]], p=2, dim=-1) < \ | |
torch.norm(vertices[faces_idx[..., 1]] - vertices[faces_idx[..., 3]], p=2, dim=-1) | |
if backslash is None: | |
loop_indice = torch.stack([ | |
torch.zeros(P - 2, dtype=int), | |
torch.arange(1, P - 1, 1, dtype=int), | |
torch.arange(2, P, 1, dtype=int) | |
], axis=1) | |
return faces[:, loop_indice].reshape(-1, 3) | |
else: | |
assert faces.shape[-1] == 4, "now only support quad mesh" | |
if isinstance(backslash, bool): | |
if backslash: | |
faces = faces[:, [0, 1, 2, 0, 2, 3]].reshape(-1, 3) | |
else: | |
faces = faces[:, [0, 1, 3, 3, 1, 2]].reshape(-1, 3) | |
else: | |
faces = torch.where( | |
backslash[:, None], | |
faces[:, [0, 1, 2, 0, 2, 3]], | |
faces[:, [0, 1, 3, 3, 1, 2]] | |
).reshape(-1, 3) | |
return faces | |
def compute_face_normal( | |
vertices: torch.Tensor, | |
faces: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Compute face normals of a triangular mesh | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [..., T, 3] triangular face indices | |
Returns: | |
normals (torch.Tensor): [..., T, 3] face normals | |
""" | |
N = vertices.shape[0] | |
index = torch.arange(N)[:, None] | |
normal = torch.cross( | |
vertices[index, faces[..., 1].long()] - vertices[index, faces[..., 0].long()], | |
vertices[index, faces[..., 2].long()] - vertices[index, faces[..., 0].long()], | |
dim=-1 | |
) | |
return F.normalize(normal, p=2, dim=-1) | |
def compute_face_angles( | |
vertices: torch.Tensor, | |
faces: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Compute face angles of a triangular mesh | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
Returns: | |
angles (torch.Tensor): [..., T, 3] face angles | |
""" | |
face_angles = [] | |
for i in range(3): | |
edge1 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 1) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i]) | |
edge2 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 2) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i]) | |
face_angle = torch.arccos(torch.sum(F.normalize(edge1, p=2, dim=-1) * F.normalize(edge2, p=2, dim=-1), dim=-1)) | |
face_angles.append(face_angle) | |
face_angles = torch.stack(face_angles, dim=-1) | |
return face_angles | |
def compute_vertex_normal( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
face_normal: torch.Tensor = None | |
) -> torch.Tensor: | |
""" | |
Compute vertex normals of a triangular mesh by averaging neightboring face normals | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
face_normal (torch.Tensor, optional): [..., T, 3] face normals. | |
None to compute face normals from vertices and faces. Defaults to None. | |
Returns: | |
normals (torch.Tensor): [..., N, 3] vertex normals | |
""" | |
N = vertices.shape[0] | |
assert faces.shape[-1] == 3, "Only support triangular mesh" | |
if face_normal is None: | |
face_normal = compute_face_normal(vertices, faces) | |
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1).flatten(-3, -2) | |
faces = faces.flatten() | |
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces[None, :]), face_normal, accumulate=True) | |
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1) | |
return vertex_normal | |
def compute_vertex_normal_weighted( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
face_normal: torch.Tensor = None | |
) -> torch.Tensor: | |
""" | |
Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals | |
according to the angles | |
Args: | |
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
face_normal (torch.Tensor, optional): [..., T, 3] face normals. | |
None to compute face normals from vertices and faces. Defaults to None. | |
Returns: | |
normals (torch.Tensor): [..., N, 3] vertex normals | |
""" | |
N = vertices.shape[0] | |
if face_normal is None: | |
face_normal = compute_face_normal(vertices, faces) | |
face_angle = compute_face_angles(vertices, faces) | |
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1) * face_angle[..., None] | |
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces.view(N, -1)), face_normal.view(N, -1, 3), accumulate=True) | |
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1) | |
return vertex_normal | |
def compute_edges( | |
faces: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Compute edges of a mesh. | |
Args: | |
faces (torch.Tensor): [T, 3] triangular face indices | |
Returns: | |
edges (torch.Tensor): [E, 2] edge indices | |
face2edge (torch.Tensor): [T, 3] mapping from face to edge | |
counts (torch.Tensor): [E] degree of each edge | |
""" | |
T = faces.shape[0] | |
edges = torch.cat([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], dim=0) # [3T, 2] | |
edges = torch.sort(edges, dim=1).values | |
edges, inv_map, counts = torch.unique(edges, return_inverse=True, return_counts=True, dim=0) | |
face2edge = inv_map.view(3, T).T | |
return edges, face2edge, counts | |
def compute_connected_components( | |
faces: torch.Tensor, | |
edges: torch.Tensor=None, | |
face2edge: torch.Tensor=None | |
) -> List[torch.Tensor]: | |
""" | |
Compute connected faces of a mesh. | |
Args: | |
faces (torch.Tensor): [T, 3] triangular face indices | |
edges (torch.Tensor, optional): [E, 2] edge indices. Defaults to None. | |
face2edge (torch.Tensor, optional): [T, 3] mapping from face to edge. Defaults to None. | |
NOTE: If edges and face2edge are not provided, they will be computed. | |
Returns: | |
components (List[torch.Tensor]): list of connected faces | |
""" | |
T = faces.shape[0] | |
if edges is None or face2edge is None: | |
edges, face2edge, _ = compute_edges(faces) | |
E = edges.shape[0] | |
labels = torch.arange(T, dtype=torch.int32, device=faces.device) | |
while True: | |
edge_labels = torch.scatter_reduce( | |
torch.zeros(E, dtype=torch.int32, device=faces.device), | |
0, | |
face2edge.flatten().long(), | |
labels.view(-1, 1).expand(-1, 3).flatten(), | |
reduce='amin', | |
include_self=False | |
) | |
new_labels = torch.min(edge_labels[face2edge], dim=-1).values | |
if torch.equal(labels, new_labels): | |
break | |
labels = new_labels | |
components = _group(labels) | |
return components | |
def compute_edge_connected_components( | |
edges: torch.Tensor, | |
) -> List[torch.Tensor]: | |
""" | |
Compute connected edges of a mesh. | |
Args: | |
edges (torch.Tensor): [E, 2] edge indices | |
Returns: | |
components (List[torch.Tensor]): list of connected edges | |
""" | |
E = edges.shape[0] | |
# Re-index edges | |
verts, edges = torch.unique(edges.flatten(), return_inverse=True) | |
edges = edges.view(-1, 2) | |
V = verts.shape[0] | |
labels = torch.arange(E, dtype=torch.int32, device=edges.device) | |
while True: | |
vertex_labels = torch.scatter_reduce( | |
torch.zeros(V, dtype=torch.int32, device=edges.device), | |
0, | |
edges.flatten().long(), | |
labels.view(-1, 1).expand(-1, 2).flatten(), | |
reduce='amin', | |
include_self=False | |
) | |
new_labels = torch.min(vertex_labels[edges], dim=-1).values | |
if torch.equal(labels, new_labels): | |
break | |
labels = new_labels | |
components = _group(labels) | |
return components | |
def compute_boundarys( | |
faces: torch.Tensor, | |
edges: torch.Tensor=None, | |
face2edge: torch.Tensor=None, | |
edge_degrees: torch.Tensor=None | |
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: | |
""" | |
Compute boundary edges of a mesh. | |
Args: | |
faces (torch.Tensor): [T, 3] triangular face indices | |
edges (torch.Tensor): [E, 2] edge indices. | |
face2edge (torch.Tensor): [T, 3] mapping from face to edge. | |
edge_degrees (torch.Tensor): [E] degree of each edge. | |
Returns: | |
boundary_edge_indices (List[torch.Tensor]): list of boundary edge indices | |
boundary_face_indices (List[torch.Tensor]): list of boundary face indices | |
""" | |
# Map each edge to boundary edge index | |
boundary_edges = edges[edge_degrees == 1] # [BE, 2] | |
boundary_edges_idx = torch.nonzero(edge_degrees == 1, as_tuple=False).flatten() # [BE] | |
E = edges.shape[0] # Edge count | |
BE = boundary_edges.shape[0] # Boundary edge count | |
map_to_boundary_edges = torch.full((E,), -1, dtype=torch.int32, device=faces.device) # [E] | |
map_to_boundary_edges[boundary_edges_idx] = torch.arange(BE, dtype=torch.int32, device=faces.device) | |
# Re-index boundary vertices | |
boundary_vertices, boundary_edges = torch.unique(boundary_edges.flatten(), return_inverse=True) | |
boundary_edges = boundary_edges.view(-1, 2) | |
BV = boundary_vertices.shape[0] | |
boundary_edge_labels = torch.arange(BE, dtype=torch.int32, device=faces.device) | |
while True: | |
boundary_vertex_labels = torch.scatter_reduce( | |
torch.zeros(BV, dtype=torch.int32, device=faces.device), | |
0, | |
boundary_edges.flatten().long(), | |
boundary_edge_labels.view(-1, 1).expand(-1, 2).flatten(), | |
reduce='amin', | |
include_self=False | |
) | |
new_boundary_edge_labels = torch.min(boundary_vertex_labels[boundary_edges], dim=-1).values | |
if torch.equal(boundary_edge_labels, new_boundary_edge_labels): | |
break | |
boundary_edge_labels = new_boundary_edge_labels | |
labels = torch.unique(boundary_edge_labels) | |
boundary_edge_indices = [boundary_edges_idx[boundary_edge_labels == label] for label in labels] | |
edge_labels = torch.full((E,), -1, dtype=torch.int32, device=faces.device) | |
edge_labels[boundary_edges_idx] = boundary_edge_labels | |
boundary_face_indices = [torch.nonzero((edge_labels[face2edge] == label).any(dim=-1), as_tuple=False).flatten() for label in labels] | |
return boundary_edge_indices, boundary_face_indices | |
def compute_dual_graph( | |
face2edge: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Compute dual graph of a mesh. | |
Args: | |
face2edge (torch.Tensor): [T, 3] mapping from face to edge. | |
Returns: | |
dual_edges (torch.Tensor): [DE, 2] face indices of dual edges | |
dual_edge2edge (torch.Tensor): [DE] mapping from dual edge to edge | |
""" | |
all_edge_indices = face2edge.flatten() # [3T] | |
dual_edges, dual_edge2edge = _group(all_edge_indices, required_group_size=2, return_values=True) | |
dual_edges = dual_edges // face2edge.shape[1] | |
return dual_edges, dual_edge2edge | |
def remove_unreferenced_vertices( | |
faces: torch.Tensor, | |
*vertice_attrs, | |
return_indices: bool = False | |
) -> Tuple[torch.Tensor, ...]: | |
""" | |
Remove unreferenced vertices of a mesh. | |
Unreferenced vertices are removed, and the face indices are updated accordingly. | |
Args: | |
faces (torch.Tensor): [T, P] face indices | |
*vertice_attrs: vertex attributes | |
Returns: | |
faces (torch.Tensor): [T, P] face indices | |
*vertice_attrs: vertex attributes | |
indices (torch.Tensor, optional): [N] indices of vertices that are kept. Defaults to None. | |
""" | |
P = faces.shape[-1] | |
fewer_indices, inv_map = torch.unique(faces, return_inverse=True) | |
faces = inv_map.to(torch.int32).reshape(-1, P) | |
ret = [faces] | |
for attr in vertice_attrs: | |
ret.append(attr[fewer_indices]) | |
if return_indices: | |
ret.append(fewer_indices) | |
return tuple(ret) | |
def remove_corrupted_faces( | |
faces: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Remove corrupted faces (faces with duplicated vertices) | |
Args: | |
faces (torch.Tensor): [T, 3] triangular face indices | |
Returns: | |
torch.Tensor: [T_, 3] triangular face indices | |
""" | |
corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0]) | |
return faces[~corrupted] | |
def merge_duplicate_vertices( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
tol: float = 1e-6 | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Merge duplicate vertices of a triangular mesh. | |
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly. | |
Args: | |
vertices (torch.Tensor): [N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
tol (float, optional): tolerance for merging. Defaults to 1e-6. | |
Returns: | |
vertices (torch.Tensor): [N_, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
""" | |
vertices_round = torch.round(vertices / tol) | |
uni, uni_inv = torch.unique(vertices_round, dim=0, return_inverse=True) | |
uni[uni_inv] = vertices | |
faces = uni_inv[faces] | |
return uni, faces | |
def remove_isolated_pieces( | |
vertices: torch.Tensor, | |
faces: torch.Tensor, | |
connected_components: List[torch.Tensor] = None, | |
thresh_num_faces: int = None, | |
thresh_radius: float = None, | |
thresh_boundary_ratio: float = None, | |
remove_unreferenced: bool = True, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Remove isolated pieces of a mesh. | |
Isolated pieces are removed, and the face indices are updated accordingly. | |
If no face is left, will return the largest connected component. | |
Args: | |
vertices (torch.Tensor): [N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
connected_components (List[torch.Tensor], optional): connected components of the mesh. If None, it will be computed. Defaults to None. | |
thresh_num_faces (int, optional): threshold of number of faces for isolated pieces. Defaults to None. | |
thresh_radius (float, optional): threshold of radius for isolated pieces. Defaults to None. | |
remove_unreferenced (bool, optional): remove unreferenced vertices after removing isolated pieces. Defaults to True. | |
Returns: | |
vertices (torch.Tensor): [N_, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
""" | |
if connected_components is None: | |
connected_components = compute_connected_components(faces) | |
connected_components = sorted(connected_components, key=lambda x: len(x), reverse=True) | |
if thresh_num_faces is not None: | |
removed = [] | |
for i in range(1, len(connected_components)): | |
if len(connected_components[i]) < thresh_num_faces: | |
removed.append(i) | |
for i in removed[::-1]: | |
connected_components.pop(i) | |
if thresh_radius is not None: | |
removed = [] | |
for i in range(1, len(connected_components)): | |
comp_vertices = vertices[faces[connected_components[i]].flatten().unique()] | |
comp_center = comp_vertices.mean(dim=0) | |
comp_radius = (comp_vertices - comp_center).norm(p=2, dim=-1).max() | |
if comp_radius < thresh_radius: | |
removed.append(i) | |
for i in removed[::-1]: | |
connected_components.pop(i) | |
if thresh_boundary_ratio is not None: | |
removed = [] | |
for i in range(1, len(connected_components)): | |
edges = torch.cat([faces[connected_components[i]][:, [0, 1]], faces[connected_components[i]][:, [1, 2]], faces[connected_components[i]][:, [2, 0]]], dim=0) | |
edges = torch.sort(edges, dim=1).values | |
edges, counts = torch.unique(edges, return_counts=True, dim=0) | |
num_boundary_edges = (counts == 1).sum().item() | |
num_faces = len(connected_components[i]) | |
if num_boundary_edges / num_faces > thresh_boundary_ratio: | |
removed.append(i) | |
for i in removed[::-1]: | |
connected_components.pop(i) | |
# post-process | |
faces = torch.cat([faces[connected_components[i]] for i in range(len(connected_components))], dim=0) | |
if remove_unreferenced: | |
faces, vertices = remove_unreferenced_vertices(faces, vertices) | |
return vertices, faces | |
def subdivide_mesh_simple(vertices: torch.Tensor, faces: torch.Tensor, n: int = 1) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles. | |
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list. | |
Args: | |
vertices (torch.Tensor): [N, 3] 3-dimensional vertices | |
faces (torch.Tensor): [T, 3] triangular face indices | |
n (int, optional): number of subdivisions. Defaults to 1. | |
Returns: | |
vertices (torch.Tensor): [N_, 3] subdivided 3-dimensional vertices | |
faces (torch.Tensor): [4 * T, 3] subdivided triangular face indices | |
""" | |
for _ in range(n): | |
edges = torch.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], dim=0) | |
edges = torch.sort(edges, dim=2) | |
uni_edges, uni_inv = torch.unique(edges, return_inverse=True, dim=0) | |
midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2 | |
n_vertices = vertices.shape[0] | |
vertices = torch.cat([vertices, midpoints], dim=0) | |
faces = torch.cat([ | |
torch.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1), | |
torch.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1), | |
torch.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1), | |
torch.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1), | |
], dim=0) | |
return vertices, faces | |
def compute_face_tbn(pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor, eps: float = 1e-7) -> torch.Tensor: | |
"""compute TBN matrix for each face | |
Args: | |
pos (torch.Tensor): shape (..., N_pos, 3), positions | |
faces_pos (torch.Tensor): shape(T, 3) | |
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, | |
faces_uv (torch.Tensor): shape(T, 3) | |
Returns: | |
torch.Tensor: (..., T, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal | |
""" | |
e01 = torch.index_select(pos, dim=-2, index=faces_pos[:, 1]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0]) | |
e02 = torch.index_select(pos, dim=-2, index=faces_pos[:, 2]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0]) | |
uv01 = torch.index_select(uv, dim=-2, index=faces_uv[:, 1]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0]) | |
uv02 = torch.index_select(uv, dim=-2, index=faces_uv[:, 2]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0]) | |
normal = torch.cross(e01, e02) | |
tangent_bitangent = torch.stack([e01, e02], dim=-1) @ torch.inverse(torch.stack([uv01, uv02], dim=-1)) | |
tbn = torch.cat([tangent_bitangent, normal.unsqueeze(-1)], dim=-1) | |
tbn = tbn / (torch.norm(tbn, p=2, dim=-2, keepdim=True) + eps) | |
return tbn | |
def compute_vertex_tbn(faces_topo: torch.Tensor, pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor) -> torch.Tensor: | |
"""compute TBN matrix for each face | |
Args: | |
faces_topo (torch.Tensor): (T, 3), face indice of topology | |
pos (torch.Tensor): shape (..., N_pos, 3), positions | |
faces_pos (torch.Tensor): shape(T, 3) | |
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, | |
faces_uv (torch.Tensor): shape(T, 3) | |
Returns: | |
torch.Tensor: (..., V, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal | |
""" | |
n_vertices = faces_topo.max().item() + 1 | |
n_tri = faces_topo.shape[-2] | |
batch_shape = pos.shape[:-2] | |
face_tbn = compute_face_tbn(pos, faces_pos, uv, faces_uv) # (..., T, 3, 3) | |
face_tbn = face_tbn[..., :, None, :, :].repeat(*[1] * len(batch_shape), 1, 3, 1, 1).view(*batch_shape, n_tri * 3, 3, 3) # (..., T * 3, 3, 3) | |
vertex_tbn = torch.index_add(torch.zeros(*batch_shape, n_vertices, 3, 3).to(face_tbn), dim=-3, index=faces_topo.view(-1), source=face_tbn) | |
vertex_tbn = vertex_tbn / (torch.norm(vertex_tbn, p=2, dim=-2, keepdim=True) + 1e-7) | |
return vertex_tbn | |
def laplacian(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform') -> torch.Tensor: | |
"""Laplacian smooth with cotangent weights | |
Args: | |
vertices (torch.Tensor): shape (..., N, 3) | |
faces (torch.Tensor): shape (T, 3) | |
weight (str): 'uniform' or 'cotangent' | |
""" | |
sum_verts = torch.zeros_like(vertices) # (..., N, 3) | |
sum_weights = torch.zeros(*vertices.shape[:-1]).to(vertices) # (..., N) | |
face_verts = torch.index_select(vertices, -2, faces.view(-1)).view(*vertices.shape[:-2], *faces.shape, vertices.shape[-1]) # (..., T, 3) | |
if weight == 'cotangent': | |
for i in range(3): | |
e1 = face_verts[..., (i + 1) % 3, :] - face_verts[..., i, :] | |
e2 = face_verts[..., (i + 2) % 3, :] - face_verts[..., i, :] | |
cot_angle = (e1 * e2).sum(dim=-1) / torch.cross(e1, e2, dim=-1).norm(p=2, dim=-1) # (..., T, 3) | |
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 1) % 3], face_verts[..., (i + 2) % 3, :] * cot_angle[..., None]) | |
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 1) % 3], cot_angle) | |
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 2) % 3], face_verts[..., (i + 1) % 3, :] * cot_angle[..., None]) | |
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 2) % 3], cot_angle) | |
elif weight == 'uniform': | |
for i in range(3): | |
sum_verts = torch.index_add(sum_verts, -2, faces[:, i], face_verts[..., (i + 1) % 3, :]) | |
sum_weights = torch.index_add(sum_weights, -1, faces[:, i], torch.ones_like(face_verts[..., i, 0])) | |
else: | |
raise NotImplementedError | |
return sum_verts / (sum_weights[..., None] + 1e-7) | |
def laplacian_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform', times: int = 5) -> torch.Tensor: | |
"""Laplacian smooth with cotangent weights | |
Args: | |
vertices (torch.Tensor): shape (..., N, 3) | |
faces (torch.Tensor): shape (T, 3) | |
weight (str): 'uniform' or 'cotangent' | |
""" | |
for _ in range(times): | |
vertices = laplacian(vertices, faces, weight) | |
return vertices | |
def taubin_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, lambda_: float = 0.5, mu_: float = -0.51) -> torch.Tensor: | |
"""Taubin smooth mesh | |
Args: | |
vertices (torch.Tensor): _description_ | |
faces (torch.Tensor): _description_ | |
lambda_ (float, optional): _description_. Defaults to 0.5. | |
mu_ (float, optional): _description_. Defaults to -0.51. | |
Returns: | |
torch.Tensor: _description_ | |
""" | |
pt = vertices + lambda_ * laplacian_smooth_mesh(vertices, faces) | |
p = pt + mu_ * laplacian_smooth_mesh(pt, faces) | |
return p | |
def laplacian_hc_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, times: int = 5, alpha: float = 0.5, beta: float = 0.5, weight: str = 'uniform'): | |
"""HC algorithm from Improved Laplacian Smoothing of Noisy Surface Meshes by J.Vollmer et al. | |
""" | |
p = vertices | |
for i in range(times): | |
q = p | |
p = laplacian_smooth_mesh(vertices, faces, weight) | |
b = p - (alpha * vertices + (1 - alpha) * q) | |
p = p - (beta * b + (1 - beta) * laplacian_smooth_mesh(b, faces, weight)) * 0.8 | |
return p | |