Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,766 Bytes
3aba902 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import torch
import torch.nn.functional as F
from typing import *
from ._helpers import batched
__all__ = [
'triangulate',
'compute_face_normal',
'compute_face_angles',
'compute_vertex_normal',
'compute_vertex_normal_weighted',
'compute_edges',
'compute_connected_components',
'compute_edge_connected_components',
'compute_boundarys',
'compute_dual_graph',
'remove_unreferenced_vertices',
'remove_corrupted_faces',
'remove_isolated_pieces',
'merge_duplicate_vertices',
'subdivide_mesh_simple',
'compute_face_tbn',
'compute_vertex_tbn',
'laplacian',
'laplacian_smooth_mesh',
'taubin_smooth_mesh',
'laplacian_hc_smooth_mesh',
]
def _group(
values: torch.Tensor,
required_group_size: Optional[int] = None,
return_values: bool = False
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
"""
Group values into groups with identical values.
Args:
values (torch.Tensor): [N] values to group
required_group_size (int, optional): required group size. Defaults to None.
return_values (bool, optional): return values of groups. Defaults to False.
Returns:
group (Union[List[torch.Tensor], torch.Tensor]): list of groups or group indices. It will be a list of groups if required_group_size is None, otherwise a tensor of group indices.
group_values (Optional[torch.Tensor]): values of groups. Only returned if return_values is True.
"""
sorted_values, indices = torch.sort(values)
nondupe = torch.cat([torch.tensor([True], dtype=torch.bool, device=values.device), sorted_values[1:] != sorted_values[:-1]])
nondupe_indices = torch.cumsum(nondupe, dim=0) - 1
counts = torch.bincount(nondupe_indices)
if required_group_size is None:
groups = torch.split(indices, counts.tolist())
if return_values:
group_values = sorted_values[nondupe]
return groups, group_values
else:
return groups
else:
counts = counts[nondupe_indices]
groups = indices[counts == required_group_size].reshape(-1, required_group_size)
if return_values:
group_values = sorted_values[nondupe][counts[nondupe] == required_group_size]
return groups, group_values
else:
return groups
def triangulate(
faces: torch.Tensor,
vertices: torch.Tensor = None,
backslash: bool = None
) -> torch.Tensor:
"""
Triangulate a polygonal mesh.
Args:
faces (torch.Tensor): [..., L, P] polygonal faces
vertices (torch.Tensor, optional): [..., N, 3] 3-dimensional vertices.
If given, the triangulation is performed according to the distance
between vertices. Defaults to None.
backslash (torch.Tensor, optional): [..., L] boolean array indicating
how to triangulate the quad faces. Defaults to None.
Returns:
(torch.Tensor): [L * (P - 2), 3] triangular faces
"""
if faces.shape[-1] == 3:
return faces
P = faces.shape[-1]
if vertices is not None:
assert faces.shape[-1] == 4, "now only support quad mesh"
if backslash is None:
faces_idx = faces.long()
backslash = torch.norm(vertices[faces_idx[..., 0]] - vertices[faces_idx[..., 2]], p=2, dim=-1) < \
torch.norm(vertices[faces_idx[..., 1]] - vertices[faces_idx[..., 3]], p=2, dim=-1)
if backslash is None:
loop_indice = torch.stack([
torch.zeros(P - 2, dtype=int),
torch.arange(1, P - 1, 1, dtype=int),
torch.arange(2, P, 1, dtype=int)
], axis=1)
return faces[:, loop_indice].reshape(-1, 3)
else:
assert faces.shape[-1] == 4, "now only support quad mesh"
if isinstance(backslash, bool):
if backslash:
faces = faces[:, [0, 1, 2, 0, 2, 3]].reshape(-1, 3)
else:
faces = faces[:, [0, 1, 3, 3, 1, 2]].reshape(-1, 3)
else:
faces = torch.where(
backslash[:, None],
faces[:, [0, 1, 2, 0, 2, 3]],
faces[:, [0, 1, 3, 3, 1, 2]]
).reshape(-1, 3)
return faces
@batched(2, None)
def compute_face_normal(
vertices: torch.Tensor,
faces: torch.Tensor
) -> torch.Tensor:
"""
Compute face normals of a triangular mesh
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [..., T, 3] triangular face indices
Returns:
normals (torch.Tensor): [..., T, 3] face normals
"""
N = vertices.shape[0]
index = torch.arange(N)[:, None]
normal = torch.cross(
vertices[index, faces[..., 1].long()] - vertices[index, faces[..., 0].long()],
vertices[index, faces[..., 2].long()] - vertices[index, faces[..., 0].long()],
dim=-1
)
return F.normalize(normal, p=2, dim=-1)
@batched(2, None)
def compute_face_angles(
vertices: torch.Tensor,
faces: torch.Tensor
) -> torch.Tensor:
"""
Compute face angles of a triangular mesh
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
Returns:
angles (torch.Tensor): [..., T, 3] face angles
"""
face_angles = []
for i in range(3):
edge1 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 1) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i])
edge2 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 2) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i])
face_angle = torch.arccos(torch.sum(F.normalize(edge1, p=2, dim=-1) * F.normalize(edge2, p=2, dim=-1), dim=-1))
face_angles.append(face_angle)
face_angles = torch.stack(face_angles, dim=-1)
return face_angles
@batched(2, None, 2)
def compute_vertex_normal(
vertices: torch.Tensor,
faces: torch.Tensor,
face_normal: torch.Tensor = None
) -> torch.Tensor:
"""
Compute vertex normals of a triangular mesh by averaging neightboring face normals
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
face_normal (torch.Tensor, optional): [..., T, 3] face normals.
None to compute face normals from vertices and faces. Defaults to None.
Returns:
normals (torch.Tensor): [..., N, 3] vertex normals
"""
N = vertices.shape[0]
assert faces.shape[-1] == 3, "Only support triangular mesh"
if face_normal is None:
face_normal = compute_face_normal(vertices, faces)
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1).flatten(-3, -2)
faces = faces.flatten()
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces[None, :]), face_normal, accumulate=True)
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1)
return vertex_normal
@batched(2, None, 2)
def compute_vertex_normal_weighted(
vertices: torch.Tensor,
faces: torch.Tensor,
face_normal: torch.Tensor = None
) -> torch.Tensor:
"""
Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals
according to the angles
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
face_normal (torch.Tensor, optional): [..., T, 3] face normals.
None to compute face normals from vertices and faces. Defaults to None.
Returns:
normals (torch.Tensor): [..., N, 3] vertex normals
"""
N = vertices.shape[0]
if face_normal is None:
face_normal = compute_face_normal(vertices, faces)
face_angle = compute_face_angles(vertices, faces)
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1) * face_angle[..., None]
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces.view(N, -1)), face_normal.view(N, -1, 3), accumulate=True)
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1)
return vertex_normal
def compute_edges(
faces: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Compute edges of a mesh.
Args:
faces (torch.Tensor): [T, 3] triangular face indices
Returns:
edges (torch.Tensor): [E, 2] edge indices
face2edge (torch.Tensor): [T, 3] mapping from face to edge
counts (torch.Tensor): [E] degree of each edge
"""
T = faces.shape[0]
edges = torch.cat([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], dim=0) # [3T, 2]
edges = torch.sort(edges, dim=1).values
edges, inv_map, counts = torch.unique(edges, return_inverse=True, return_counts=True, dim=0)
face2edge = inv_map.view(3, T).T
return edges, face2edge, counts
def compute_connected_components(
faces: torch.Tensor,
edges: torch.Tensor=None,
face2edge: torch.Tensor=None
) -> List[torch.Tensor]:
"""
Compute connected faces of a mesh.
Args:
faces (torch.Tensor): [T, 3] triangular face indices
edges (torch.Tensor, optional): [E, 2] edge indices. Defaults to None.
face2edge (torch.Tensor, optional): [T, 3] mapping from face to edge. Defaults to None.
NOTE: If edges and face2edge are not provided, they will be computed.
Returns:
components (List[torch.Tensor]): list of connected faces
"""
T = faces.shape[0]
if edges is None or face2edge is None:
edges, face2edge, _ = compute_edges(faces)
E = edges.shape[0]
labels = torch.arange(T, dtype=torch.int32, device=faces.device)
while True:
edge_labels = torch.scatter_reduce(
torch.zeros(E, dtype=torch.int32, device=faces.device),
0,
face2edge.flatten().long(),
labels.view(-1, 1).expand(-1, 3).flatten(),
reduce='amin',
include_self=False
)
new_labels = torch.min(edge_labels[face2edge], dim=-1).values
if torch.equal(labels, new_labels):
break
labels = new_labels
components = _group(labels)
return components
def compute_edge_connected_components(
edges: torch.Tensor,
) -> List[torch.Tensor]:
"""
Compute connected edges of a mesh.
Args:
edges (torch.Tensor): [E, 2] edge indices
Returns:
components (List[torch.Tensor]): list of connected edges
"""
E = edges.shape[0]
# Re-index edges
verts, edges = torch.unique(edges.flatten(), return_inverse=True)
edges = edges.view(-1, 2)
V = verts.shape[0]
labels = torch.arange(E, dtype=torch.int32, device=edges.device)
while True:
vertex_labels = torch.scatter_reduce(
torch.zeros(V, dtype=torch.int32, device=edges.device),
0,
edges.flatten().long(),
labels.view(-1, 1).expand(-1, 2).flatten(),
reduce='amin',
include_self=False
)
new_labels = torch.min(vertex_labels[edges], dim=-1).values
if torch.equal(labels, new_labels):
break
labels = new_labels
components = _group(labels)
return components
def compute_boundarys(
faces: torch.Tensor,
edges: torch.Tensor=None,
face2edge: torch.Tensor=None,
edge_degrees: torch.Tensor=None
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""
Compute boundary edges of a mesh.
Args:
faces (torch.Tensor): [T, 3] triangular face indices
edges (torch.Tensor): [E, 2] edge indices.
face2edge (torch.Tensor): [T, 3] mapping from face to edge.
edge_degrees (torch.Tensor): [E] degree of each edge.
Returns:
boundary_edge_indices (List[torch.Tensor]): list of boundary edge indices
boundary_face_indices (List[torch.Tensor]): list of boundary face indices
"""
# Map each edge to boundary edge index
boundary_edges = edges[edge_degrees == 1] # [BE, 2]
boundary_edges_idx = torch.nonzero(edge_degrees == 1, as_tuple=False).flatten() # [BE]
E = edges.shape[0] # Edge count
BE = boundary_edges.shape[0] # Boundary edge count
map_to_boundary_edges = torch.full((E,), -1, dtype=torch.int32, device=faces.device) # [E]
map_to_boundary_edges[boundary_edges_idx] = torch.arange(BE, dtype=torch.int32, device=faces.device)
# Re-index boundary vertices
boundary_vertices, boundary_edges = torch.unique(boundary_edges.flatten(), return_inverse=True)
boundary_edges = boundary_edges.view(-1, 2)
BV = boundary_vertices.shape[0]
boundary_edge_labels = torch.arange(BE, dtype=torch.int32, device=faces.device)
while True:
boundary_vertex_labels = torch.scatter_reduce(
torch.zeros(BV, dtype=torch.int32, device=faces.device),
0,
boundary_edges.flatten().long(),
boundary_edge_labels.view(-1, 1).expand(-1, 2).flatten(),
reduce='amin',
include_self=False
)
new_boundary_edge_labels = torch.min(boundary_vertex_labels[boundary_edges], dim=-1).values
if torch.equal(boundary_edge_labels, new_boundary_edge_labels):
break
boundary_edge_labels = new_boundary_edge_labels
labels = torch.unique(boundary_edge_labels)
boundary_edge_indices = [boundary_edges_idx[boundary_edge_labels == label] for label in labels]
edge_labels = torch.full((E,), -1, dtype=torch.int32, device=faces.device)
edge_labels[boundary_edges_idx] = boundary_edge_labels
boundary_face_indices = [torch.nonzero((edge_labels[face2edge] == label).any(dim=-1), as_tuple=False).flatten() for label in labels]
return boundary_edge_indices, boundary_face_indices
def compute_dual_graph(
face2edge: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute dual graph of a mesh.
Args:
face2edge (torch.Tensor): [T, 3] mapping from face to edge.
Returns:
dual_edges (torch.Tensor): [DE, 2] face indices of dual edges
dual_edge2edge (torch.Tensor): [DE] mapping from dual edge to edge
"""
all_edge_indices = face2edge.flatten() # [3T]
dual_edges, dual_edge2edge = _group(all_edge_indices, required_group_size=2, return_values=True)
dual_edges = dual_edges // face2edge.shape[1]
return dual_edges, dual_edge2edge
def remove_unreferenced_vertices(
faces: torch.Tensor,
*vertice_attrs,
return_indices: bool = False
) -> Tuple[torch.Tensor, ...]:
"""
Remove unreferenced vertices of a mesh.
Unreferenced vertices are removed, and the face indices are updated accordingly.
Args:
faces (torch.Tensor): [T, P] face indices
*vertice_attrs: vertex attributes
Returns:
faces (torch.Tensor): [T, P] face indices
*vertice_attrs: vertex attributes
indices (torch.Tensor, optional): [N] indices of vertices that are kept. Defaults to None.
"""
P = faces.shape[-1]
fewer_indices, inv_map = torch.unique(faces, return_inverse=True)
faces = inv_map.to(torch.int32).reshape(-1, P)
ret = [faces]
for attr in vertice_attrs:
ret.append(attr[fewer_indices])
if return_indices:
ret.append(fewer_indices)
return tuple(ret)
def remove_corrupted_faces(
faces: torch.Tensor
) -> torch.Tensor:
"""
Remove corrupted faces (faces with duplicated vertices)
Args:
faces (torch.Tensor): [T, 3] triangular face indices
Returns:
torch.Tensor: [T_, 3] triangular face indices
"""
corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0])
return faces[~corrupted]
def merge_duplicate_vertices(
vertices: torch.Tensor,
faces: torch.Tensor,
tol: float = 1e-6
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Merge duplicate vertices of a triangular mesh.
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly.
Args:
vertices (torch.Tensor): [N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
tol (float, optional): tolerance for merging. Defaults to 1e-6.
Returns:
vertices (torch.Tensor): [N_, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
"""
vertices_round = torch.round(vertices / tol)
uni, uni_inv = torch.unique(vertices_round, dim=0, return_inverse=True)
uni[uni_inv] = vertices
faces = uni_inv[faces]
return uni, faces
def remove_isolated_pieces(
vertices: torch.Tensor,
faces: torch.Tensor,
connected_components: List[torch.Tensor] = None,
thresh_num_faces: int = None,
thresh_radius: float = None,
thresh_boundary_ratio: float = None,
remove_unreferenced: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Remove isolated pieces of a mesh.
Isolated pieces are removed, and the face indices are updated accordingly.
If no face is left, will return the largest connected component.
Args:
vertices (torch.Tensor): [N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
connected_components (List[torch.Tensor], optional): connected components of the mesh. If None, it will be computed. Defaults to None.
thresh_num_faces (int, optional): threshold of number of faces for isolated pieces. Defaults to None.
thresh_radius (float, optional): threshold of radius for isolated pieces. Defaults to None.
remove_unreferenced (bool, optional): remove unreferenced vertices after removing isolated pieces. Defaults to True.
Returns:
vertices (torch.Tensor): [N_, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
"""
if connected_components is None:
connected_components = compute_connected_components(faces)
connected_components = sorted(connected_components, key=lambda x: len(x), reverse=True)
if thresh_num_faces is not None:
removed = []
for i in range(1, len(connected_components)):
if len(connected_components[i]) < thresh_num_faces:
removed.append(i)
for i in removed[::-1]:
connected_components.pop(i)
if thresh_radius is not None:
removed = []
for i in range(1, len(connected_components)):
comp_vertices = vertices[faces[connected_components[i]].flatten().unique()]
comp_center = comp_vertices.mean(dim=0)
comp_radius = (comp_vertices - comp_center).norm(p=2, dim=-1).max()
if comp_radius < thresh_radius:
removed.append(i)
for i in removed[::-1]:
connected_components.pop(i)
if thresh_boundary_ratio is not None:
removed = []
for i in range(1, len(connected_components)):
edges = torch.cat([faces[connected_components[i]][:, [0, 1]], faces[connected_components[i]][:, [1, 2]], faces[connected_components[i]][:, [2, 0]]], dim=0)
edges = torch.sort(edges, dim=1).values
edges, counts = torch.unique(edges, return_counts=True, dim=0)
num_boundary_edges = (counts == 1).sum().item()
num_faces = len(connected_components[i])
if num_boundary_edges / num_faces > thresh_boundary_ratio:
removed.append(i)
for i in removed[::-1]:
connected_components.pop(i)
# post-process
faces = torch.cat([faces[connected_components[i]] for i in range(len(connected_components))], dim=0)
if remove_unreferenced:
faces, vertices = remove_unreferenced_vertices(faces, vertices)
return vertices, faces
def subdivide_mesh_simple(vertices: torch.Tensor, faces: torch.Tensor, n: int = 1) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles.
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list.
Args:
vertices (torch.Tensor): [N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
n (int, optional): number of subdivisions. Defaults to 1.
Returns:
vertices (torch.Tensor): [N_, 3] subdivided 3-dimensional vertices
faces (torch.Tensor): [4 * T, 3] subdivided triangular face indices
"""
for _ in range(n):
edges = torch.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], dim=0)
edges = torch.sort(edges, dim=2)
uni_edges, uni_inv = torch.unique(edges, return_inverse=True, dim=0)
midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2
n_vertices = vertices.shape[0]
vertices = torch.cat([vertices, midpoints], dim=0)
faces = torch.cat([
torch.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1),
torch.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1),
torch.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1),
torch.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1),
], dim=0)
return vertices, faces
def compute_face_tbn(pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
"""compute TBN matrix for each face
Args:
pos (torch.Tensor): shape (..., N_pos, 3), positions
faces_pos (torch.Tensor): shape(T, 3)
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates,
faces_uv (torch.Tensor): shape(T, 3)
Returns:
torch.Tensor: (..., T, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal
"""
e01 = torch.index_select(pos, dim=-2, index=faces_pos[:, 1]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0])
e02 = torch.index_select(pos, dim=-2, index=faces_pos[:, 2]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0])
uv01 = torch.index_select(uv, dim=-2, index=faces_uv[:, 1]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0])
uv02 = torch.index_select(uv, dim=-2, index=faces_uv[:, 2]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0])
normal = torch.cross(e01, e02)
tangent_bitangent = torch.stack([e01, e02], dim=-1) @ torch.inverse(torch.stack([uv01, uv02], dim=-1))
tbn = torch.cat([tangent_bitangent, normal.unsqueeze(-1)], dim=-1)
tbn = tbn / (torch.norm(tbn, p=2, dim=-2, keepdim=True) + eps)
return tbn
def compute_vertex_tbn(faces_topo: torch.Tensor, pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor) -> torch.Tensor:
"""compute TBN matrix for each face
Args:
faces_topo (torch.Tensor): (T, 3), face indice of topology
pos (torch.Tensor): shape (..., N_pos, 3), positions
faces_pos (torch.Tensor): shape(T, 3)
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates,
faces_uv (torch.Tensor): shape(T, 3)
Returns:
torch.Tensor: (..., V, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal
"""
n_vertices = faces_topo.max().item() + 1
n_tri = faces_topo.shape[-2]
batch_shape = pos.shape[:-2]
face_tbn = compute_face_tbn(pos, faces_pos, uv, faces_uv) # (..., T, 3, 3)
face_tbn = face_tbn[..., :, None, :, :].repeat(*[1] * len(batch_shape), 1, 3, 1, 1).view(*batch_shape, n_tri * 3, 3, 3) # (..., T * 3, 3, 3)
vertex_tbn = torch.index_add(torch.zeros(*batch_shape, n_vertices, 3, 3).to(face_tbn), dim=-3, index=faces_topo.view(-1), source=face_tbn)
vertex_tbn = vertex_tbn / (torch.norm(vertex_tbn, p=2, dim=-2, keepdim=True) + 1e-7)
return vertex_tbn
def laplacian(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform') -> torch.Tensor:
"""Laplacian smooth with cotangent weights
Args:
vertices (torch.Tensor): shape (..., N, 3)
faces (torch.Tensor): shape (T, 3)
weight (str): 'uniform' or 'cotangent'
"""
sum_verts = torch.zeros_like(vertices) # (..., N, 3)
sum_weights = torch.zeros(*vertices.shape[:-1]).to(vertices) # (..., N)
face_verts = torch.index_select(vertices, -2, faces.view(-1)).view(*vertices.shape[:-2], *faces.shape, vertices.shape[-1]) # (..., T, 3)
if weight == 'cotangent':
for i in range(3):
e1 = face_verts[..., (i + 1) % 3, :] - face_verts[..., i, :]
e2 = face_verts[..., (i + 2) % 3, :] - face_verts[..., i, :]
cot_angle = (e1 * e2).sum(dim=-1) / torch.cross(e1, e2, dim=-1).norm(p=2, dim=-1) # (..., T, 3)
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 1) % 3], face_verts[..., (i + 2) % 3, :] * cot_angle[..., None])
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 1) % 3], cot_angle)
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 2) % 3], face_verts[..., (i + 1) % 3, :] * cot_angle[..., None])
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 2) % 3], cot_angle)
elif weight == 'uniform':
for i in range(3):
sum_verts = torch.index_add(sum_verts, -2, faces[:, i], face_verts[..., (i + 1) % 3, :])
sum_weights = torch.index_add(sum_weights, -1, faces[:, i], torch.ones_like(face_verts[..., i, 0]))
else:
raise NotImplementedError
return sum_verts / (sum_weights[..., None] + 1e-7)
def laplacian_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform', times: int = 5) -> torch.Tensor:
"""Laplacian smooth with cotangent weights
Args:
vertices (torch.Tensor): shape (..., N, 3)
faces (torch.Tensor): shape (T, 3)
weight (str): 'uniform' or 'cotangent'
"""
for _ in range(times):
vertices = laplacian(vertices, faces, weight)
return vertices
def taubin_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, lambda_: float = 0.5, mu_: float = -0.51) -> torch.Tensor:
"""Taubin smooth mesh
Args:
vertices (torch.Tensor): _description_
faces (torch.Tensor): _description_
lambda_ (float, optional): _description_. Defaults to 0.5.
mu_ (float, optional): _description_. Defaults to -0.51.
Returns:
torch.Tensor: _description_
"""
pt = vertices + lambda_ * laplacian_smooth_mesh(vertices, faces)
p = pt + mu_ * laplacian_smooth_mesh(pt, faces)
return p
def laplacian_hc_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, times: int = 5, alpha: float = 0.5, beta: float = 0.5, weight: str = 'uniform'):
"""HC algorithm from Improved Laplacian Smoothing of Noisy Surface Meshes by J.Vollmer et al.
"""
p = vertices
for i in range(times):
q = p
p = laplacian_smooth_mesh(vertices, faces, weight)
b = p - (alpha * vertices + (1 - alpha) * q)
p = p - (beta * b + (1 - beta) * laplacian_smooth_mesh(b, faces, weight)) * 0.8
return p
|