Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn.functional as F | |
import time | |
from tqdm import tqdm | |
from models.spatracker.models.core.spatracker.spatracker import get_points_on_a_grid | |
from models.spatracker.models.core.model_utils import smart_cat | |
from models.spatracker.models.build_spatracker import ( | |
build_spatracker, | |
) | |
from models.spatracker.models.core.model_utils import ( | |
meshgrid2d, bilinear_sample2d, smart_cat | |
) | |
import spaces | |
class SpaTrackerPredictor(torch.nn.Module): | |
def __init__( | |
self, checkpoint="cotracker/checkpoints/cotracker_stride_4_wind_8.pth", | |
interp_shape=(384, 512), | |
seq_length=16 | |
): | |
super().__init__() | |
self.interp_shape = interp_shape | |
self.support_grid_size = 6 | |
model = build_spatracker(checkpoint, seq_length=seq_length) | |
self.model = model | |
self.model.eval() | |
def forward( | |
self, | |
video, # (1, T, 3, H, W) | |
video_depth = None, # (T, 1, H, W) | |
# input prompt types: | |
# - None. Dense tracks are computed in this case. You can adjust *query_frame* to compute tracks starting from a specific frame. | |
# *backward_tracking=True* will compute tracks in both directions. | |
# - queries. Queried points of shape (1, N, 3) in format (t, x, y) for frame index and pixel coordinates. | |
# - grid_size. Grid of N*N points from the first frame. if segm_mask is provided, then computed only for the mask. | |
# You can adjust *query_frame* and *backward_tracking* for the regular grid in the same way as for dense tracks. | |
queries: torch.Tensor = None, | |
segm_mask: torch.Tensor = None, # Segmentation mask of shape (B, 1, H, W) | |
grid_size: int = 0, | |
grid_query_frame: int = 0, # only for dense and regular grid tracks | |
backward_tracking: bool = False, | |
depth_predictor=None, | |
wind_length: int = 8, | |
progressive_tracking: bool = False, | |
): | |
if queries is None and grid_size == 0: | |
tracks, visibilities, T_Firsts = self._compute_dense_tracks( | |
video, | |
grid_query_frame=grid_query_frame, | |
backward_tracking=backward_tracking, | |
video_depth=video_depth, | |
depth_predictor=depth_predictor, | |
wind_length=wind_length, | |
) | |
else: | |
tracks, visibilities, T_Firsts = self._compute_sparse_tracks( | |
video, | |
queries, | |
segm_mask, | |
grid_size, | |
add_support_grid=False, #(grid_size == 0 or segm_mask is not None), | |
grid_query_frame=grid_query_frame, | |
backward_tracking=backward_tracking, | |
video_depth=video_depth, | |
depth_predictor=depth_predictor, | |
wind_length=wind_length, | |
) | |
return tracks, visibilities, T_Firsts | |
def _compute_dense_tracks( | |
self, video, grid_query_frame, grid_size=30, backward_tracking=False, | |
depth_predictor=None, video_depth=None, wind_length=8 | |
): | |
*_, H, W = video.shape | |
grid_step = W // grid_size | |
grid_width = W // grid_step | |
grid_height = H // grid_step | |
tracks = visibilities = T_Firsts = None | |
grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device) | |
grid_pts[0, :, 0] = grid_query_frame | |
for offset in tqdm(range(grid_step * grid_step)): | |
ox = offset % grid_step | |
oy = offset // grid_step | |
grid_pts[0, :, 1] = ( | |
torch.arange(grid_width).repeat(grid_height) * grid_step + ox | |
) | |
grid_pts[0, :, 2] = ( | |
torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy | |
) | |
tracks_step, visibilities_step, T_First_step = self._compute_sparse_tracks( | |
video=video, | |
queries=grid_pts, | |
backward_tracking=backward_tracking, | |
wind_length=wind_length, | |
video_depth=video_depth, | |
depth_predictor=depth_predictor, | |
) | |
tracks = smart_cat(tracks, tracks_step, dim=2) | |
visibilities = smart_cat(visibilities, visibilities_step, dim=2) | |
T_Firsts = smart_cat(T_Firsts, T_First_step, dim=1) | |
return tracks, visibilities, T_Firsts | |
def _compute_sparse_tracks( | |
self, | |
video, | |
queries, | |
segm_mask=None, | |
grid_size=0, | |
add_support_grid=False, | |
grid_query_frame=0, | |
backward_tracking=False, | |
depth_predictor=None, | |
video_depth=None, | |
wind_length=8, | |
): | |
B, T, C, H, W = video.shape | |
assert B == 1 | |
video = video.reshape(B * T, C, H, W) | |
video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear") | |
video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) | |
if queries is not None: | |
queries = queries.clone() | |
B, N, D = queries.shape | |
assert D == 3 | |
queries[:, :, 1] *= self.interp_shape[1] / W | |
queries[:, :, 2] *= self.interp_shape[0] / H | |
elif grid_size > 0: | |
grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device) | |
if segm_mask is not None: | |
segm_mask = F.interpolate( | |
segm_mask, tuple(self.interp_shape), mode="nearest" | |
) | |
point_mask = segm_mask[0, 0][ | |
(grid_pts[0, :, 1]).round().long().cpu(), | |
(grid_pts[0, :, 0]).round().long().cpu(), | |
].bool() | |
grid_pts_extra = grid_pts[:, point_mask] | |
else: | |
grid_pts_extra = None | |
if grid_pts_extra is not None: | |
total_num = int(grid_pts_extra.shape[1]) | |
total_num = min(800, total_num) | |
pick_idx = torch.randperm(grid_pts_extra.shape[1])[:total_num] | |
grid_pts_extra = grid_pts_extra[:, pick_idx] | |
queries_extra = torch.cat( | |
[ | |
torch.ones_like(grid_pts_extra[:, :, :1]) * grid_query_frame, | |
grid_pts_extra, | |
], | |
dim=2, | |
) | |
queries = torch.cat( | |
[torch.zeros_like(grid_pts[:, :, :1]), grid_pts], | |
dim=2, | |
) | |
if add_support_grid: | |
grid_pts = get_points_on_a_grid(self.support_grid_size, self.interp_shape, device=video.device) | |
grid_pts = torch.cat( | |
[torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2 | |
) | |
queries = torch.cat([queries, grid_pts], dim=1) | |
## ----------- estimate the video depth -----------## | |
if video_depth is None: | |
with torch.no_grad(): | |
if video[0].shape[0]>30: | |
vidDepths = [] | |
for i in range(video[0].shape[0]//30+1): | |
if (i+1)*30 > video[0].shape[0]: | |
end_idx = video[0].shape[0] | |
else: | |
end_idx = (i+1)*30 | |
if end_idx == i*30: | |
break | |
video_ = video[0][i*30:end_idx] | |
vidDepths.append(depth_predictor.infer(video_/255)) | |
video_depth = torch.cat(vidDepths, dim=0) | |
else: | |
video_depth = depth_predictor.infer(video[0]/255) | |
video_depth = F.interpolate(video_depth, | |
tuple(self.interp_shape), mode="nearest") | |
# from PIL import Image | |
# import numpy | |
# depth_frame = video_depth[0].detach().cpu() | |
# depth_frame = depth_frame.squeeze(0) | |
# print(depth_frame) | |
# print(depth_frame.min(), depth_frame.max()) | |
# depth_img = (depth_frame * 255).numpy().astype(numpy.uint8) | |
# depth_img = Image.fromarray(depth_img, mode='L') | |
# depth_img.save('outputs/depth_map.png') | |
# frame = video[0, 0].detach().cpu() | |
# frame = frame.permute(1, 2, 0) | |
# frame = (frame * 255).numpy().astype(numpy.uint8) | |
# frame = Image.fromarray(frame, mode='RGB') | |
# frame.save('outputs/frame.png') | |
depths = video_depth | |
rgbds = torch.cat([video, depths[None,...]], dim=2) | |
# get the 3D queries | |
depth_interp=[] | |
for i in range(queries.shape[1]): | |
depth_interp_i = bilinear_sample2d(video_depth[queries[:, i:i+1, 0].long()], | |
queries[:, i:i+1, 1], queries[:, i:i+1, 2]) | |
depth_interp.append(depth_interp_i) | |
depth_interp = torch.cat(depth_interp, dim=1) | |
queries = smart_cat(queries, depth_interp,dim=-1) | |
#NOTE: free the memory of depth_predictor | |
del depth_predictor | |
torch.cuda.empty_cache() | |
t0 = time.time() | |
tracks, __, visibilities = self.model(rgbds=rgbds, queries=queries, iters=6, wind_S=wind_length) | |
print("Time taken for inference: ", time.time()-t0) | |
if backward_tracking: | |
tracks, visibilities = self._compute_backward_tracks( | |
rgbds, queries, tracks, visibilities | |
) | |
if add_support_grid: | |
queries[:, -self.support_grid_size ** 2 :, 0] = T - 1 | |
if add_support_grid: | |
tracks = tracks[:, :, : -self.support_grid_size ** 2] | |
visibilities = visibilities[:, :, : -self.support_grid_size ** 2] | |
thr = 0.9 | |
visibilities = visibilities > thr | |
# correct query-point predictions | |
# see https://github.com/facebookresearch/co-tracker/issues/28 | |
# TODO: batchify | |
for i in range(len(queries)): | |
queries_t = queries[i, :tracks.size(2), 0].to(torch.int64) | |
arange = torch.arange(0, len(queries_t)) | |
# overwrite the predictions with the query points | |
tracks[i, queries_t, arange] = queries[i, :tracks.size(2), 1:] | |
# correct visibilities, the query points should be visible | |
visibilities[i, queries_t, arange] = True | |
T_First = queries[..., :tracks.size(2), 0].to(torch.uint8) | |
tracks[:, :, :, 0] *= W / float(self.interp_shape[1]) | |
tracks[:, :, :, 1] *= H / float(self.interp_shape[0]) | |
return tracks, visibilities, T_First | |
def _compute_backward_tracks(self, video, queries, tracks, visibilities): | |
inv_video = video.flip(1).clone() | |
inv_queries = queries.clone() | |
inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1 | |
inv_tracks, __, inv_visibilities = self.model( | |
rgbds=inv_video, queries=queries, iters=6 | |
) | |
inv_tracks = inv_tracks.flip(1) | |
inv_visibilities = inv_visibilities.flip(1) | |
mask = tracks == 0 | |
tracks[mask] = inv_tracks[mask] | |
visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]] | |
return tracks, visibilities |